These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25785302)

  • 21. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots.
    Redl FX; Cho KS; Murray CB; O'Brien S
    Nature; 2003 Jun; 423(6943):968-71. PubMed ID: 12827196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coating agent-induced mechanical behavior of 3D self-assembled nanocrystals.
    Çolak A; Wei J; Arfaoui I; Pileni MP
    Phys Chem Chem Phys; 2017 Sep; 19(35):23887-23897. PubMed ID: 28829072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perovskite-type superlattices from lead halide perovskite nanocubes.
    Cherniukh I; Rainò G; Stöferle T; Burian M; Travesset A; Naumenko D; Amenitsch H; Erni R; Mahrt RF; Bodnarchuk MI; Kovalenko MV
    Nature; 2021 May; 593(7860):535-542. PubMed ID: 34040208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crack patterns in superlattices made of maghemite nanocrystals.
    Ngo AT; Richardi J; Pileni MP
    Phys Chem Chem Phys; 2013 Jul; 15(26):10666-72. PubMed ID: 23727907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-temperature crystallization of nanocrystals into three-dimensional superlattices.
    Wu L; Willis JJ; McKay IS; Diroll BT; Qin J; Cargnello M; Tassone CJ
    Nature; 2017 Aug; 548(7666):197-201. PubMed ID: 28759888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anisotropic Cracking of Nanocrystal Superlattices.
    Diroll BT; Ma X; Wu Y; Murray CB
    Nano Lett; 2017 Oct; 17(10):6501-6506. PubMed ID: 28921994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellulose nanocrystal submonolayers by spin coating.
    Kontturi E; Johansson LS; Kontturi KS; Ahonen P; Thüne PC; Laine J
    Langmuir; 2007 Sep; 23(19):9674-80. PubMed ID: 17696372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shape-Directed Co-Assembly of Lead Halide Perovskite Nanocubes with Dielectric Nanodisks into Binary Nanocrystal Superlattices.
    Cherniukh I; Rainò G; Sekh TV; Zhu C; Shynkarenko Y; John RA; Kobiyama E; Mahrt RF; Stöferle T; Erni R; Kovalenko MV; Bodnarchuk MI
    ACS Nano; 2021 Oct; 15(10):16488-16500. PubMed ID: 34549582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size-dependent multiple twinning in nanocrystal superlattices.
    Rupich SM; Shevchenko EV; Bodnarchuk MI; Lee B; Talapin DV
    J Am Chem Soc; 2010 Jan; 132(1):289-96. PubMed ID: 19968283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals.
    Ye X; Zhu C; Ercius P; Raja SN; He B; Jones MR; Hauwiller MR; Liu Y; Xu T; Alivisatos AP
    Nat Commun; 2015 Dec; 6():10052. PubMed ID: 26628256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Halides in the Ordered Structure Transitions of Heated Gold Nanocrystal Superlattices.
    Yu Y; Goodfellow BW; Rasch MR; Bosoy C; Smilgies DM; Korgel BA
    Langmuir; 2015 Jun; 31(24):6924-32. PubMed ID: 26013597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation.
    Kang Y; Ye X; Chen J; Qi L; Diaz RE; Doan-Nguyen V; Xing G; Kagan CR; Li J; Gorte RJ; Stach EA; Murray CB
    J Am Chem Soc; 2013 Jan; 135(4):1499-505. PubMed ID: 23294105
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predictive Modeling of Nanocrystal Orientation in Superlattices: Insights from Ligand Entropy.
    Price EK; Tisdale WA
    Nano Lett; 2024 Aug; 24(32):9983-9989. PubMed ID: 39078514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substitutional doping in nanocrystal superlattices.
    Cargnello M; Johnston-Peck AC; Diroll BT; Wong E; Datta B; Damodhar D; Doan-Nguyen VV; Herzing AA; Kagan CR; Murray CB
    Nature; 2015 Aug; 524(7566):450-3. PubMed ID: 26310766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Growth Rate on the Crystal Orientation and Magnetization Performance of Cobalt Nanocrystal Arrays Electrodeposited from Aqueous Solution.
    Saeki R; Ohgai T
    Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30042366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reversible solvent vapor-mediated phase changes in nanocrystal superlattices.
    Goodfellow BW; Korgel BA
    ACS Nano; 2011 Apr; 5(4):2419-24. PubMed ID: 21517119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Site-specific patterning of highly ordered nanocrystal superlattices through biomolecular surface confinement.
    Noh H; Choi C; Hung AM; Jin S; Cha JN
    ACS Nano; 2010 Sep; 4(9):5076-80. PubMed ID: 20718405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large-area ordered superlattices from magnetic Wustite/cobalt ferrite core/shell nanocrystals by doctor blade casting.
    Bodnarchuk MI; Kovalenko MV; Pichler S; Fritz-Popovski G; Hesser G; Heiss W
    ACS Nano; 2010 Jan; 4(1):423-31. PubMed ID: 20028102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systematic electron crystallographic studies of self-assembled binary nanocrystal superlattices.
    Chen J; Ye X; Murray CB
    ACS Nano; 2010 Apr; 4(4):2374-81. PubMed ID: 20302347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases.
    Boles MA; Talapin DV
    J Am Chem Soc; 2015 Apr; 137(13):4494-502. PubMed ID: 25773648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.