These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 25785477)

  • 1. Diphenylalanine self assembly: novel ion mobility methods showing the essential role of water.
    Do TD; Bowers MT
    Anal Chem; 2015 Apr; 87(8):4245-52. PubMed ID: 25785477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Water Self-Diffusion in Diphenylalanine Peptide Nanotubes.
    Zelenovskiy PS; Domingues EM; Slabov V; Kopyl S; Ugolkov VL; Figueiredo FML; Kholkin AL
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27485-27492. PubMed ID: 32463652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disassembly and reassembly of diphenylalanine crystals through evaporation of solvent.
    Xia J; Sun B; Wang C; Sun N; Cao H; Jia Y; Yang Y; Li J
    J Colloid Interface Sci; 2021 Oct; 599():661-666. PubMed ID: 33979748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-step kinetic model of the self-assembly mechanism for diphenylalanine micro/nanotube formation.
    Ishikawa MS; Busch C; Motzkus M; Martinho H; Buckup T
    Phys Chem Chem Phys; 2017 Dec; 19(47):31647-31654. PubMed ID: 29164193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures and Properties of the Self-Assembling Diphenylalanine Peptide Nanotubes Containing Water Molecules: Modeling and Data Analysis.
    Bystrov V; Coutinho J; Zelenovskiy P; Nuraeva A; Kopyl S; Zhulyabina O; Tverdislov V
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33050446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-dependent formation kinetics of L,L-diphenylalanine micro/nanotubes.
    Bandeira CCS; Foiani LMC; Carlos GB; Ishikawa MS; Ferreira PMGL; da Silva Martinho H
    Phys Chem Chem Phys; 2023 Feb; 25(6):5107-5113. PubMed ID: 36722992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular modeling and computational study of the chiral-dependent structures and properties of the self-assembling diphenylalanine peptide nanotubes, containing water molecules.
    Bystrov VS; Coutinho J; Zelenovskiy PS; Nuraeva AS; Kopyl S; Filippov SV; Zhulyabina OA; Tverdislov VA
    J Mol Model; 2020 Nov; 26(11):326. PubMed ID: 33140163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and Dynamics of Confined Water Inside Diphenylalanine Peptide Nanotubes.
    Chen J; Qiu Z; Huang J
    ACS Omega; 2023 Nov; 8(45):42936-42950. PubMed ID: 38024738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular insights into diphenylalanine nanotube assembly: all-atom simulations of oligomerization.
    Jeon J; Mills CE; Shell MS
    J Phys Chem B; 2013 Apr; 117(15):3935-43. PubMed ID: 23521630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.
    Chen J; Qin S; Wu X; Chu AP
    ACS Nano; 2016 Jan; 10(1):832-8. PubMed ID: 26654935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly formation of the magic ion of (H2O)20O+: observation of nanoscale cages of oxygenated water clusters induced from iron nanoparticles.
    Wu HF; Chin CC; Liu BM; Chen YC; Lin CH; Chang KD; Lee YH
    Rapid Commun Mass Spectrom; 2011 Feb; 25(3):410-4. PubMed ID: 21213359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salicylaldehyde azine cluster formation observed by cold-spray ionization mass spectrometry.
    Xu X; Qiao J; Deng X; Na N; Ouyang J
    J Mass Spectrom; 2013 Aug; 48(8):961-8. PubMed ID: 23893644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of water molecules on photoluminescence from hierarchical peptide nanotubes and water probing capability.
    Wang M; Xiong S; Wu X; Chu PK
    Small; 2011 Oct; 7(19):2801-7. PubMed ID: 22049551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ESI-MS studies of mixed-ligand Fe(II) complexes containing 1,10-phenanthroline and 1,10-phenanthroline-5,6-dione as ligands.
    Kobetić R; Gembarovski D; Baranović G; Gabelica V
    J Mass Spectrom; 2008 Jun; 43(6):753-64. PubMed ID: 18205242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular modelling and computational studies of peptide diphenylalanine nanotubes, containing waters: structural and interactions analysis.
    Bystrov VS; Filippov SV
    J Mol Model; 2022 Mar; 28(4):81. PubMed ID: 35247081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the formation of an amoxicillin adduct with methanol using electrospray ion trap tandem mass spectrometry.
    Grujic S; Vasiljevic T; Lausevic M; Ast T
    Rapid Commun Mass Spectrom; 2008; 22(1):67-74. PubMed ID: 18050261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospray and chemical ionization mass spectrometry of di-n-butyl sulfate. Unimolecular chemistry of its protonated form and quantification method by liquid chromatography/electrospray ionization tandem mass spectrometry.
    Rondeau D; Bouchoux G; Vogel R; Muller E
    Rapid Commun Mass Spectrom; 2000; 14(15):1410-6. PubMed ID: 10920363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion mobility separation coupled with MS detects two structural states of Alzheimer's disease Aβ1-40 peptide oligomers.
    Kłoniecki M; Jabłonowska A; Poznański J; Langridge J; Hughes C; Campuzano I; Giles K; Dadlez M
    J Mol Biol; 2011 Mar; 407(1):110-24. PubMed ID: 21237171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of opposite charges in protein electrospray ionization mass spectrometry.
    Samalikova M; Grandori R
    J Mass Spectrom; 2003 Sep; 38(9):941-7. PubMed ID: 14505321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.