BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 2578548)

  • 1. Temperature effects on sodium pump phosphoenzyme distribution in human red blood cells.
    Kaplan JH; Kenney LJ
    J Gen Physiol; 1985 Jan; 85(1):123-36. PubMed ID: 2578548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium ions, acting at high-affinity extracellular sites, inhibit sodium-ATPase activity of the sodium pump by slowing dephosphorylation.
    Beaugé LA; Glynn IM
    J Physiol; 1979 Apr; 289():17-31. PubMed ID: 222896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. External Na dependence of ouabain-sensitive ATP:ADP exchange initiated by photolysis of intracellular caged-ATP in human red cell ghosts.
    Kaplan JH; Hollis RJ
    Nature; 1980 Dec; 288(5791):587-9. PubMed ID: 6255339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leucine 332 at the boundary between the fourth transmembrane segment and the cytoplasmic domain of Na+,K+-ATPase plays a pivotal role in the ion translocating conformational changes.
    Vilsen B
    Biochemistry; 1997 Oct; 36(43):13312-24. PubMed ID: 9341223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADP+orthophosphate (P(i)) stimulates an Na/K pump-mediated coefflux of P(i) and Na in human red blood cell ghosts.
    Marín R; Hoffman JF
    J Gen Physiol; 1994 Jul; 104(1):33-55. PubMed ID: 7964595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of mono and divalent cations on total and partial reactions catalysed by pig kidney Na,K-ATPase.
    Beaugé L; Campos MA
    J Physiol; 1986 Jun; 375():1-25. PubMed ID: 3025425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of ADP-sensitive phosphorylated intermediate in the electric eel Na, K-ATPase preparation.
    Yoda A; Yoda S
    Mol Pharmacol; 1982 Nov; 22(3):693-9. PubMed ID: 6296660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate from the phosphointermediate (EP) of the human red blood cell Na/K pump is coeffluxed with Na, in the absence of external K.
    Marín R; Hoffman JF
    J Gen Physiol; 1994 Jul; 104(1):1-32. PubMed ID: 7964591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two different phosphorylation-dephosphorylation cycles of Na,K-ATPase proteoliposomes accompanying Na+ transport in the absence of K+.
    Yoda A; Yoda S
    J Biol Chem; 1987 Jan; 262(1):110-5. PubMed ID: 3025196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red cell sodium fluxes catalysed by the sodium pump in the absence of K+ and ADP.
    Lee KH; Blostein R
    Nature; 1980 May; 285(5763):338-9. PubMed ID: 6246454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The occlusion of sodium ions within the mammalian sodium-potassium pump: its role in sodium transport.
    Glynn IM; Hara Y; Richards DE
    J Physiol; 1984 Jun; 351():531-47. PubMed ID: 6086905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Existence of ADP- and KCl-insensitive phosphoenzyme intermediate of Na+,K(+)-ATPase at alkaline Ph.
    Siagian RR; Hara Y; Nakao M
    Biochem Int; 1990 Oct; 22(1):67-74. PubMed ID: 2177987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for essential carboxyls in the cation-binding domain of the Na,K-ATPase.
    Arguello JM; Kaplan JH
    J Biol Chem; 1991 Aug; 266(22):14627-35. PubMed ID: 1650364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of altering the ATP/ADP ratio on pump-mediated Na/K and Na/Na exchanges in resealed human red blood cell ghosts.
    Kennedy BG; Lunn G; Hoffman JF
    J Gen Physiol; 1986 Jan; 87(1):47-72. PubMed ID: 3950576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic heterogeneity of phosphoenzyme of Na,K-ATPase modeled by unmixed lipid phases. Competence of the phosphointermediate.
    Klodos I; Post RL; Forbush B
    J Biol Chem; 1994 Jan; 269(3):1734-43. PubMed ID: 8294422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of beta subunit structure on the interaction of Na+/K(+)-ATPase complexes with Na+. A chimeric beta subunit reduces the Na+ dependence of phosphoenzyme formation from ATP.
    Eakle KA; Lyu RM; Farley RA
    J Biol Chem; 1995 Jun; 270(23):13937-47. PubMed ID: 7775454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of Na-ATPase activity by the Na,K pump. Interactions of the phosphorylated intermediates with Na+, Tris+, and K+.
    Nørby JG; Klodos I; Christiansen NO
    J Gen Physiol; 1983 Dec; 82(6):725-59. PubMed ID: 6319537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occlusion of cobalt ions within the phosphorylated forms of the Na+-K+ pump isolated from dog kidney.
    Richards DE
    J Physiol; 1988 Oct; 404():497-514. PubMed ID: 2855351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium pump-mediated ATP:ADP exchange. The sided effects of sodium and potassium ions.
    Kaplan JH
    J Gen Physiol; 1982 Dec; 80(6):915-37. PubMed ID: 6294224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular Requirements for Passive Proton Transport through the Na
    Stanley KS; Meyer DJ; Gatto C; Artigas P
    Biophys J; 2016 Dec; 111(11):2430-2439. PubMed ID: 27926844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.