BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 25785517)

  • 1. Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy.
    Leenheer AJ; Jungjohann KL; Zavadil KR; Sullivan JP; Harris CT
    ACS Nano; 2015 Apr; 9(4):4379-89. PubMed ID: 25785517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM.
    Mehdi BL; Qian J; Nasybulin E; Park C; Welch DA; Faller R; Mehta H; Henderson WA; Xu W; Wang CM; Evans JE; Liu J; Zhang JG; Mueller KT; Browning ND
    Nano Lett; 2015 Mar; 15(3):2168-73. PubMed ID: 25705928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mirror-Like Electrodeposition of Lithium Metal under a Low-Resistance Artificial Solid Electrolyte Interphase Layer.
    Hu F; Li Z; Wang S; Tenhaeff WE
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39674-39684. PubMed ID: 32805885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy.
    Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL
    Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium Self-Discharge and Its Prevention: Direct Visualization through In Situ Electrochemical Scanning Transmission Electron Microscopy.
    Harrison KL; Zavadil KR; Hahn NT; Meng X; Elam JW; Leenheer A; Zhang JG; Jungjohann KL
    ACS Nano; 2017 Nov; 11(11):11194-11205. PubMed ID: 29112807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation.
    Wang L; Deng X; Dai PX; Guo YG; Wang D; Wan LJ
    Phys Chem Chem Phys; 2012 May; 14(20):7330-6. PubMed ID: 22526455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing the Sensitive Lithium with Atomic Precision: Cryogenic Electron Microscopy for Batteries.
    Liu Y; Ju Z; Zhang B; Wang Y; Nai J; Liu T; Tao X
    Acc Chem Res; 2021 May; 54(9):2088-2099. PubMed ID: 33856759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes.
    Song J; Lee H; Choo MJ; Park JK; Kim HT
    Sci Rep; 2015 Sep; 5():14458. PubMed ID: 26411701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batteries.
    Dachraoui W; Pauer R; Battaglia C; Erni R
    ACS Nano; 2023 Oct; 17(20):20434-20444. PubMed ID: 37831942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy.
    Shimoyamada A; Yamamoto K; Yoshida R; Kato T; Iriyama Y; Hirayama T
    Microscopy (Oxf); 2015 Dec; 64(6):401-8. PubMed ID: 26337787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries.
    Mehdi BL; Stevens A; Qian J; Park C; Xu W; Henderson WA; Zhang JG; Mueller KT; Browning ND
    Sci Rep; 2016 Oct; 6():34267. PubMed ID: 27703188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Microparticles to Nanowires and Back: Radical Transformations in Plated Li Metal Morphology Revealed via in Situ Scanning Electron Microscopy.
    Yulaev A; Oleshko V; Haney P; Liu J; Qi Y; Talin AA; Leite MS; Kolmakov A
    Nano Lett; 2018 Mar; 18(3):1644-1650. PubMed ID: 29397748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.
    Liu S; Li GR; Gao XP
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7783-9. PubMed ID: 26981849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying inactive lithium in lithium metal batteries.
    Fang C; Li J; Zhang M; Zhang Y; Yang F; Lee JZ; Lee MH; Alvarado J; Schroeder MA; Yang Y; Lu B; Williams N; Ceja M; Yang L; Cai M; Gu J; Xu K; Wang X; Meng YS
    Nature; 2019 Aug; 572(7770):511-515. PubMed ID: 31435056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte.
    Walker W; Giordani V; Uddin J; Bryantsev VS; Chase GV; Addison D
    J Am Chem Soc; 2013 Feb; 135(6):2076-9. PubMed ID: 23360567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters.
    Sacci RL; Black JM; Balke N; Dudney NJ; More KL; Unocic RR
    Nano Lett; 2015 Mar; 15(3):2011-8. PubMed ID: 25706693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the solid electrolyte interphase of Li-O2 battery electrolyte by analytical transmission electron microscopy.
    Kitta M; Sano H
    Microscopy (Oxf); 2020 Jul; 69(4):227-233. PubMed ID: 32181796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ TEM study of the Li-Au reaction in an electrochemical liquid cell.
    Zeng Z; Liang WI; Chu YH; Zheng H
    Faraday Discuss; 2014; 176():95-107. PubMed ID: 25597983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Pinhole-free Li
    Li Y; Sun Y; Pei A; Chen K; Vailionis A; Li Y; Zheng G; Sun J; Cui Y
    ACS Cent Sci; 2018 Jan; 4(1):97-104. PubMed ID: 29392181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.