BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25785540)

  • 1. Design of a highly selective quenched activity-based probe and its application in dual color imaging studies of cathepsin S activity localization.
    Oresic Bender K; Ofori L; van der Linden WA; Mock ED; Datta GK; Chowdhury S; Li H; Segal E; Sanchez Lopez M; Ellman JA; Figdor CG; Bogyo M; Verdoes M
    J Am Chem Soc; 2015 Apr; 137(14):4771-7. PubMed ID: 25785540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Live Cell Imaging and Profiling of Cysteine Cathepsin Activity Using a Quenched Activity-Based Probe.
    Edgington-Mitchell LE; Bogyo M; Verdoes M
    Methods Mol Biol; 2017; 1491():145-159. PubMed ID: 27778287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved quenched fluorescent probe for imaging of cysteine cathepsin activity.
    Verdoes M; Oresic Bender K; Segal E; van der Linden WA; Syed S; Withana NP; Sanman LE; Bogyo M
    J Am Chem Soc; 2013 Oct; 135(39):14726-30. PubMed ID: 23971698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of extracellular cathepsin S activity by a selective near infrared fluorescence substrate-based probe.
    Wartenberg M; Saidi A; Galibert M; Joulin-Giet A; Burlaud-Gaillard J; Lecaille F; Scott CJ; Aucagne V; Delmas AF; Lalmanach G
    Biochimie; 2019 Nov; 166():84-93. PubMed ID: 30914255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of intestinal cancer by local, topical application of a quenched fluorescence probe for cysteine cathepsins.
    Segal E; Prestwood TR; van der Linden WA; Carmi Y; Bhattacharya N; Withana N; Verdoes M; Habtezion A; Engleman EG; Bogyo M
    Chem Biol; 2015 Jan; 22(1):148-58. PubMed ID: 25579207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cathepsins X and B display distinct activity profiles that can be exploited for inhibitor design.
    Ménard R; Therrien C; Lachance P; Sulea T; Qo H; Alvarez-Hernandez AD; Roush WR
    Biol Chem; 2001 May; 382(5):839-45. PubMed ID: 11517939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteine-type cathepsins promote the effector phase of acute cutaneous delayed-type hypersensitivity reactions.
    Schwenck J; Maurer A; Fehrenbacher B; Mehling R; Knopf P; Mucha N; Haupt D; Fuchs K; Griessinger CM; Bukala D; Holstein J; Schaller M; Menendez IG; Ghoreschi K; Quintanilla-Martinez L; Gütschow M; Laufer S; Reinheckel T; Röcken M; Kalbacher H; Pichler BJ; Kneilling M
    Theranostics; 2019; 9(13):3903-3917. PubMed ID: 31281521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nonpeptidic cathepsin S activity-based probe for noninvasive optical imaging of tumor-associated macrophages.
    Verdoes M; Edgington LE; Scheeren FA; Leyva M; Blum G; Weiskopf K; Bachmann MH; Ellman JA; Bogyo M
    Chem Biol; 2012 May; 19(5):619-28. PubMed ID: 22633413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the specificity of cysteine proteinases at subsites remote from the active site: analysis of P4, P3, P2' and P3' variations in extended substrates.
    Portaro FC; Santos AB; Cezari MH; Juliano MA; Juliano L; Carmona E
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):123-9. PubMed ID: 10727410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cathepsins X and B can be differentiated through their respective mono- and dipeptidyl carboxypeptidase activities.
    Therrien C; Lachance P; Sulea T; Purisima EO; Qi H; Ziomek E; Alvarez-Hernandez A; Roush WR; Ménard R
    Biochemistry; 2001 Mar; 40(9):2702-11. PubMed ID: 11258881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A coumarin-labeled vinyl sulfone as tripeptidomimetic activity-based probe for cysteine cathepsins.
    Mertens MD; Schmitz J; Horn M; Furtmann N; Bajorath J; Mareš M; Gütschow M
    Chembiochem; 2014 May; 15(7):955-9. PubMed ID: 24648212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of alpha,beta-unsaturated ketone-based probes for papain-family cysteine proteases.
    Yang Z; Fonović M; Verhelst SH; Blum G; Bogyo M
    Bioorg Med Chem; 2009 Feb; 17(3):1071-8. PubMed ID: 18343672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Cathepsin Probes for Sensitive Molecular Imaging.
    Yitzhak Y; Gaikwad H; Weiss-Sadan T; Merquiol E; Turk B; Blum G
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of cathepsin S detection using a designed FRET peptide based on putative natural substrates.
    Oliveira M; Torquato RJ; Alves MF; Juliano MA; Brömme D; Barros NM; Carmona AK
    Peptides; 2010 Apr; 31(4):562-7. PubMed ID: 20045715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo imaging of intraperitoneally disseminated tumors in model mice by using activatable fluorescent small-molecular probes for activity of cathepsins.
    Fujii T; Kamiya M; Urano Y
    Bioconjug Chem; 2014 Oct; 25(10):1838-46. PubMed ID: 25196809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted pH-dependent fluorescent activity-based cathepsin probes.
    Hoogendoorn S; Habets KL; Passemard S; Kuiper J; van der Marel GA; Florea BI; Overkleeft HS
    Chem Commun (Camb); 2011 Sep; 47(33):9363-5. PubMed ID: 21769329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salivary Tick Cystatin OmC2 Targets Lysosomal Cathepsins S and C in Human Dendritic Cells.
    Zavašnik-Bergant T; Vidmar R; Sekirnik A; Fonović M; Salát J; Grunclová L; Kopáček P; Turk B
    Front Cell Infect Microbiol; 2017; 7():288. PubMed ID: 28713775
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.