These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25785600)

  • 1. Therapeutic implications from sensitivity analysis of tumor angiogenesis models.
    Poleszczuk J; Hahnfeldt P; Enderling H
    PLoS One; 2015; 10(3):e0120007. PubMed ID: 25785600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer.
    Welti J; Loges S; Dimmeler S; Carmeliet P
    J Clin Invest; 2013 Aug; 123(8):3190-200. PubMed ID: 23908119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mathematical model of angiogenesis and tumor growth: analysis and application in anti-angiogenesis therapy.
    Zheng X; Sweidan M
    J Math Biol; 2018 Nov; 77(5):1589-1622. PubMed ID: 30019238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CAPE suppresses VEGFR-2 activation, and tumor neovascularization and growth.
    Chung TW; Kim SJ; Choi HJ; Kwak CH; Song KH; Suh SJ; Kim KJ; Ha KT; Park YG; Chang YC; Chang HW; Lee YC; Kim CH
    J Mol Med (Berl); 2013 Feb; 91(2):271-82. PubMed ID: 22935775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FOXF1 promotes angiogenesis and accelerates bevacizumab resistance in colorectal cancer by transcriptionally activating VEGFA.
    Wang S; Xiao Z; Hong Z; Jiao H; Zhu S; Zhao Y; Bi J; Qiu J; Zhang D; Yan J; Zhang L; Huang C; Li T; Liang L; Liao W; Ye Y; Ding Y
    Cancer Lett; 2018 Dec; 439():78-90. PubMed ID: 30253191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Tumor-in-Host DEB-Based Approach for Modeling Cachexia and Bevacizumab Resistance.
    Tosca EM; Rocchetti M; Pesenti E; Magni P
    Cancer Res; 2020 Feb; 80(4):820-831. PubMed ID: 31818849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The isoflavone metabolite 6-methoxyequol inhibits angiogenesis and suppresses tumor growth.
    Bellou S; Karali E; Bagli E; Al-Maharik N; Morbidelli L; Ziche M; Adlercreutz H; Murphy C; Fotsis T
    Mol Cancer; 2012 May; 11():35. PubMed ID: 22583931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Endothelial SCUBE2 (Signal Peptide-CUB-EGF Domain-Containing Protein 2), a Novel VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) Coreceptor, Suppresses Tumor Angiogenesis.
    Lin YC; Liu CY; Kannagi R; Yang RB
    Arterioscler Thromb Vasc Biol; 2018 May; 38(5):1202-1215. PubMed ID: 29545238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiogenic factors as potential drug target: efficacy and limitations of anti-angiogenic therapy.
    Gacche RN; Meshram RJ
    Biochim Biophys Acta; 2014 Aug; 1846(1):161-79. PubMed ID: 24836679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Rationale of antiangiogenic therapy].
    Tímár J; Paku S; Tóvári J; Döme B
    Magy Onkol; 2006; 50(2):141-51. PubMed ID: 16888678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PE, a new sulfated saponin from sea cucumber, exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo.
    Tian F; Zhang X; Tong Y; Yi Y; Zhang S; Li L; Sun P; Lin L; Ding J
    Cancer Biol Ther; 2005 Aug; 4(8):874-82. PubMed ID: 16082187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological Pathways Involved in Tumor Angiogenesis and Bevacizumab Based Anti-Angiogenic Therapy with Special References to Ovarian Cancer.
    Loizzi V; Del Vecchio V; Gargano G; De Liso M; Kardashi A; Naglieri E; Resta L; Cicinelli E; Cormio G
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28906427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proinflammatory activity of VEGF-targeted treatment through reversal of tumor endothelial cell anergy.
    Nowak-Sliwinska P; van Beijnum JR; Griffioen CJ; Huinen ZR; Sopesens NG; Schulz R; Jenkins SV; Dings RPM; Groenendijk FH; Huijbers EJM; Thijssen VLJL; Jonasch E; Vyth-Dreese FA; Jordanova ES; Bex A; Bernards R; de Gruijl TD; Griffioen AW
    Angiogenesis; 2023 May; 26(2):279-293. PubMed ID: 36459240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Investigation of the Influence of Angiogenesis on Tumor Growth with the Use of a Mathematical Model].
    Kolobov AV; Kuznetsov MB
    Biofizika; 2015; 60(3):555-63. PubMed ID: 26349221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A new treatment protocol targeting tumor vasculature--- metronomic chemotherapy combined radiotherapy].
    Qiu H; Wang GM
    Ai Zheng; 2007 Dec; 26(12):1392-6. PubMed ID: 18076810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth.
    Gacche RN; Meshram RJ
    Prog Biophys Mol Biol; 2013 Nov; 113(2):333-54. PubMed ID: 24139944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-tumor angiogenesis effect of a new compound: B-9-3 through interference with VEGFR2 signaling.
    Ma Q; Chen W; Chen W
    Tumour Biol; 2016 May; 37(5):6107-16. PubMed ID: 26611645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microenvironment-Mediated Modeling of Tumor Response to Vascular-Targeting Drugs.
    Gevertz JL
    Adv Exp Med Biol; 2016; 936():191-208. PubMed ID: 27739049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of tumor receptor heterogeneity on the response to anti-angiogenic cancer treatment.
    Li D; Finley SD
    Integr Biol (Camb); 2018 Apr; 10(4):253-269. PubMed ID: 29623971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mast cells decrease efficacy of anti-angiogenic therapy by secreting matrix-degrading granzyme B.
    Wroblewski M; Bauer R; Cubas Córdova M; Udonta F; Ben-Batalla I; Legler K; Hauser C; Egberts J; Janning M; Velthaus J; Schulze C; Pantel K; Bokemeyer C; Loges S
    Nat Commun; 2017 Aug; 8(1):269. PubMed ID: 28814715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.