BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25785649)

  • 1. Toxicity mechanisms identification via gene set enrichment analysis of time-series toxicogenomics data: impact of time and concentration.
    Gao C; Weisman D; Lan J; Gou N; Gu AZ
    Environ Sci Technol; 2015 Apr; 49(7):4618-26. PubMed ID: 25785649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prokaryotic real-time gene expression profiling for toxicity assessment.
    Onnis-Hayden A; Weng H; He M; Hansen S; Ilyin V; Lewis K; Guc AZ
    Environ Sci Technol; 2009 Jun; 43(12):4574-81. PubMed ID: 19603679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new Transcriptional Effect Level Index (TELI) for toxicogenomics-based toxicity assessment.
    Gou N; Gu AZ
    Environ Sci Technol; 2011 Jun; 45(12):5410-7. PubMed ID: 21612275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantitative toxicogenomics assay reveals the evolution and nature of toxicity during the transformation of environmental pollutants.
    Gou N; Yuan S; Lan J; Gao C; Alshawabkeh AN; Gu AZ
    Environ Sci Technol; 2014; 48(15):8855-63. PubMed ID: 25010344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Editor's Highlight: Application of Gene Set Enrichment Analysis for Identification of Chemically Induced, Biologically Relevant Transcriptomic Networks and Potential Utilization in Human Health Risk Assessment.
    Dean JL; Zhao QJ; Lambert JC; Hawkins BS; Thomas RS; Wesselkamper SC
    Toxicol Sci; 2017 May; 157(1):85-99. PubMed ID: 28123101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of dynamic topic models to toxicogenomics data.
    Lee M; Liu Z; Huang R; Tong W
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):368. PubMed ID: 27766956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional responses of Escherichia coli during recovery from inorganic or organic mercury exposure.
    LaVoie SP; Summers AO
    BMC Genomics; 2018 Jan; 19(1):52. PubMed ID: 29338696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Conserved Toxicogenomic Responses in Chemically Exposed Hepatocytes across Species and Platforms.
    El-Hachem N; Grossmann P; Blanchet-Cohen A; Bateman AR; Bouchard N; Archambault J; Aerts HJ; Haibe-Kains B
    Environ Health Perspect; 2016 Mar; 124(3):313-20. PubMed ID: 26173225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DTNI: a novel toxicogenomics data analysis tool for identifying the molecular mechanisms underlying the adverse effects of toxic compounds.
    Hendrickx DM; Souza T; Jennen DGJ; Kleinjans JCS
    Arch Toxicol; 2017 Jun; 91(6):2343-2352. PubMed ID: 28032149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicogenomics in Environmental Science.
    Brinke A; Buchinger S
    Adv Biochem Eng Biotechnol; 2017; 157():159-186. PubMed ID: 27864593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a toxicogenomics signature for genotoxicity using a dose-optimization and informatics strategy in human cells.
    Li HH; Hyduke DR; Chen R; Heard P; Yauk CL; Aubrecht J; Fornace AJ
    Environ Mol Mutagen; 2015 Jul; 56(6):505-19. PubMed ID: 25733355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomarkers in aquatic plants: selection and utility.
    Brain RA; Cedergreen N
    Rev Environ Contam Toxicol; 2009; 198():49-109. PubMed ID: 19253039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel transcriptomics based in vitro method to compare and predict hepatotoxicity based on mode of action.
    De Abrew KN; Overmann GJ; Adams RL; Tiesman JP; Dunavent J; Shan YK; Carr GJ; Daston GP; Naciff JM
    Toxicology; 2015 Feb; 328():29-39. PubMed ID: 25475144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TinderMIX: Time-dose integrated modelling of toxicogenomics data.
    Serra A; Fratello M; Del Giudice G; Saarimäki LA; Paci M; Federico A; Greco D
    Gigascience; 2020 May; 9(5):. PubMed ID: 32449777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of microRNAs in toxicology.
    Yu HW; Cho WC
    Arch Toxicol; 2015 Mar; 89(3):319-25. PubMed ID: 25586887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome-based functional classifiers for direct immunotoxicity.
    Shao J; Berger LF; Hendriksen PJ; Peijnenburg AA; van Loveren H; Volger OL
    Arch Toxicol; 2014 Mar; 88(3):673-89. PubMed ID: 24356939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding maximal transcriptome differences between reprotoxic and non-reprotoxic phthalate responses in rat testis.
    Yuan X; Jonker MJ; de Wilde J; Verhoef A; Wittink FR; van Benthem J; Bessems JG; Hakkert BC; Kuiper RV; van Steeg H; Breit TM; Luijten M
    J Appl Toxicol; 2011 Jul; 31(5):421-30. PubMed ID: 21061450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing high dimensional toxicogenomic data using consensus clustering.
    Gao C; Weisman D; Gou N; Ilyin V; Gu AZ
    Environ Sci Technol; 2012 Aug; 46(15):8413-21. PubMed ID: 22703334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering diseases and biological targets for environmental chemicals using toxicogenomics networks.
    Audouze K; Juncker AS; Roque FJ; Krysiak-Baltyn K; Weinhold N; Taboureau O; Jensen TS; Brunak S
    PLoS Comput Biol; 2010 May; 6(5):e1000788. PubMed ID: 20502671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicogenomics of water chemistry influence on chronic lead exposure to the fathead minnow (Pimephales promelas).
    Mager EM; Wintz H; Vulpe CD; Brix KV; Grosell M
    Aquat Toxicol; 2008 May; 87(3):200-9. PubMed ID: 18346799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.