These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 25785668)
1. Effects of polymer graft properties on protein adsorption and transport in ion exchange chromatography: a multiscale modeling study. Basconi JE; Carta G; Shirts MR Langmuir; 2015 Apr; 31(14):4176-87. PubMed ID: 25785668 [TBL] [Abstract][Full Text] [Related]
2. Construction by molecular dynamics modeling and simulations of the porous structures formed by dextran polymer chains attached on the surface of the pores of a base matrix: characterization of porous structures. Zhang X; Wang JC; Lacki KM; Liapis AI J Phys Chem B; 2005 Nov; 109(44):21028-39. PubMed ID: 16853725 [TBL] [Abstract][Full Text] [Related]
3. Dextran-grafted cation exchanger based on superporous agarose gel: adsorption isotherms, uptake kinetics and dynamic protein adsorption performance. Shi QH; Jia GD; Sun Y J Chromatogr A; 2010 Jul; 1217(31):5084-91. PubMed ID: 20579653 [TBL] [Abstract][Full Text] [Related]
4. Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography. Stone MC; Carta G J Chromatogr A; 2007 Apr; 1146(2):202-15. PubMed ID: 17336312 [TBL] [Abstract][Full Text] [Related]
5. Characterization of new polymer-grafted protein cation exchangers developed by partial neutralization of carboxyl groups derivatized by modification of poly(ethylenimine)-Sepharose with succinic anhydride. Zhao Y; Dong X; Yu L; Liu Y; Sun Y J Chromatogr A; 2018 May; 1550():28-34. PubMed ID: 29605181 [TBL] [Abstract][Full Text] [Related]
6. Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography: Effect of ionic strength and protein characteristics. Stone MC; Tao Y; Carta G J Chromatogr A; 2009 May; 1216(20):4465-74. PubMed ID: 19342054 [TBL] [Abstract][Full Text] [Related]
7. Adsorption kinetics of deamidated antibody variants on macroporous and dextran-grafted cation exchangers. III. Microscopic studies. Tao Y; Almodovar EX; Carta G; Ferreira G; Robbins D J Chromatogr A; 2011 Nov; 1218(44):8027-35. PubMed ID: 21955780 [TBL] [Abstract][Full Text] [Related]
8. Protein adsorption to poly(2-aminoethyl methacrylate)-grafted Sepharose gel: Effects of chain length and charge density. Yu L; Li C; Liu Y; Sun Y J Chromatogr A; 2021 Feb; 1638():461869. PubMed ID: 33433375 [TBL] [Abstract][Full Text] [Related]
9. Porous polymer adsorbent media constructed by molecular dynamics modeling and simulations: the immobilization of charged ligands and their effect on pore structure and local nonelectroneutrality. Riccardi E; Wang JC; Liapis AI J Phys Chem B; 2009 Feb; 113(8):2317-27. PubMed ID: 19182931 [TBL] [Abstract][Full Text] [Related]
10. Rapid monoclonal antibody adsorption on dextran-grafted agarose media for ion-exchange chromatography. Tao Y; Carta G J Chromatogr A; 2008 Nov; 1211(1-2):70-9. PubMed ID: 18929362 [TBL] [Abstract][Full Text] [Related]
11. Counterion effects on protein adsorption equilibrium and kinetics in polymer-grafted cation exchangers. Perez Almodovar EX; Glatz B; Carta G J Chromatogr A; 2012 Aug; 1253():83-93. PubMed ID: 22835689 [TBL] [Abstract][Full Text] [Related]
12. Pore size distributions of ion exchangers and relation to protein binding capacity. Yao Y; Lenhoff AM J Chromatogr A; 2006 Sep; 1126(1-2):107-19. PubMed ID: 16844131 [TBL] [Abstract][Full Text] [Related]
13. Effect of dextran layer on protein uptake to dextran-grafted adsorbents for ion-exchange and mixed-mode chromatography. Yu LL; Shi QH; Sun Y J Sep Sci; 2011 Nov; 34(21):2950-9. PubMed ID: 21953979 [TBL] [Abstract][Full Text] [Related]
14. Effects of external electric fields on lysozyme adsorption by molecular dynamics simulations. Xie Y; Liao C; Zhou J Biophys Chem; 2013 Sep; 179():26-34. PubMed ID: 23727988 [TBL] [Abstract][Full Text] [Related]
15. Protein adsorption to (3-acrylamido propyl) trimethyl ammonium chloride-grafted Sepharose gel: Charge density reduction via copolymerizing with electroneutral monomer drastically increases uptake rate. Yu L; Xu R; Dong X; Liu Y; Sun Y J Chromatogr A; 2020 Oct; 1629():461483. PubMed ID: 32823015 [TBL] [Abstract][Full Text] [Related]
16. Role of tentacles and protein loading on pore accessibility and mass transfer in cation exchange materials for proteins. Thomas H; Coquebert de Neuville B; Storti G; Morbidelli M; Joehnck M; Schulte M J Chromatogr A; 2013 Apr; 1285():48-56. PubMed ID: 23489485 [TBL] [Abstract][Full Text] [Related]
17. Electrostatic model for protein adsorption in ion-exchange chromatography and application to monoclonal antibodies, lysozyme and chymotrypsinogen A. Guélat B; Ströhlein G; Lattuada M; Morbidelli M J Chromatogr A; 2010 Aug; 1217(35):5610-21. PubMed ID: 20663509 [TBL] [Abstract][Full Text] [Related]
18. Modification of Martini force field for molecular dynamics simulation of hydrophobic charge induction chromatography of lysozyme. Zhang L; Bai S; Sun Y J Mol Graph Model; 2011 Jun; 29(7):906-14. PubMed ID: 21441050 [TBL] [Abstract][Full Text] [Related]
19. Control of specific attachment of proteins by adsorption of polymer layers. Erol M; Du H; Sukhishvili S Langmuir; 2006 Dec; 22(26):11329-36. PubMed ID: 17154622 [TBL] [Abstract][Full Text] [Related]
20. Adsorption of deamidated antibody variants on macroporous and dextran-grafted cation exchangers: II. Adsorption kinetics. Tao Y; Carta G; Ferreira G; Robbins D J Chromatogr A; 2011 Mar; 1218(11):1530-7. PubMed ID: 21300361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]