These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 25785686)
1. How simple is too simple? Computational perspective on importance of second-shell environment for metal-ion selectivity. Gutten O; Rulíšek L Phys Chem Chem Phys; 2015 Jun; 17(22):14393-404. PubMed ID: 25785686 [TBL] [Abstract][Full Text] [Related]
2. Interaction of metal ions with biomolecular ligands: how accurate are calculated free energies associated with metal ion complexation? Gutten O; Beššeová I; Rulíšek L J Phys Chem A; 2011 Oct; 115(41):11394-402. PubMed ID: 21888367 [TBL] [Abstract][Full Text] [Related]
3. Metal binding affinity and selectivity in metalloproteins: insights from computational studies. Dudev T; Lim C Annu Rev Biophys; 2008; 37():97-116. PubMed ID: 18573074 [TBL] [Abstract][Full Text] [Related]
4. Control of metal ion size-based selectivity through chelate ring geometry. metal ion complexing properties of 2,2'-biimidazole. Buist D; Williams NJ; Reibenspies JH; Hancock RD Inorg Chem; 2010 Jun; 49(11):5033-9. PubMed ID: 20446716 [TBL] [Abstract][Full Text] [Related]
5. Heterogeneous behavior of metalloproteins toward metal ion binding and selectivity: insights from molecular dynamics studies. Gogoi P; Chandravanshi M; Mandal SK; Srivastava A; Kanaujia SP J Biomol Struct Dyn; 2016 Jul; 34(7):1470-85. PubMed ID: 26248730 [TBL] [Abstract][Full Text] [Related]
6. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations. Dudev T; Lin YL; Dudev M; Lim C J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685 [TBL] [Abstract][Full Text] [Related]
7. Enhanced metal ion selectivity of 2,9-di-(pyrid-2-yl)-1,10-phenanthroline and its use as a fluorescent sensor for cadmium(II). Cockrell GM; Zhang G; VanDerveer DG; Thummel RP; Hancock RD J Am Chem Soc; 2008 Jan; 130(4):1420-30. PubMed ID: 18177045 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the metal binding properties of a histidine-rich fusogenic peptide by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Sinz A; Jin AJ; Zschörnig O J Mass Spectrom; 2003 Nov; 38(11):1150-9. PubMed ID: 14648822 [TBL] [Abstract][Full Text] [Related]
9. A combined experimental and theoretical study of divalent metal ion selectivity and function in proteins: application to E. coli ribonuclease H1. Babu CS; Dudev T; Casareno R; Cowan JA; Lim C J Am Chem Soc; 2003 Aug; 125(31):9318-28. PubMed ID: 12889961 [TBL] [Abstract][Full Text] [Related]
10. Electronic properties and desolvation penalties of metal ions plus protein electrostatics dictate the metal binding affinity and selectivity in the copper efflux regulator. Rao L; Cui Q; Xu X J Am Chem Soc; 2010 Dec; 132(51):18092-102. PubMed ID: 21128636 [TBL] [Abstract][Full Text] [Related]
11. Effects of transition metal ion identity and π-cation interactions in metal-bis(peptide) complexes containing phenylalanine. Utley B; Angel LA Eur J Mass Spectrom (Chichester); 2010; 16(6):631-43. PubMed ID: 21173465 [TBL] [Abstract][Full Text] [Related]
12. Nanopore analysis of the interaction of metal ions with prion proteins and peptides. Stefureac RI; Madampage CA; Andrievskaia O; Lee JS Biochem Cell Biol; 2010 Apr; 88(2):347-58. PubMed ID: 20453935 [TBL] [Abstract][Full Text] [Related]
13. Protein-inorganic array construction: design and synthesis of the building blocks. Bogdan ND; Matache M; Meier VM; Dobrotă C; Dumitru I; Roiban GD; Funeriu DP Chemistry; 2010 Feb; 16(7):2170-80. PubMed ID: 20063328 [TBL] [Abstract][Full Text] [Related]
14. Metal ions binding to NAD-glycohydrolase from the venom of Agkistrodon acutus: regulation of multicatalytic activity. Xu X; Zhang L; Luo Z; Shen D; Wu H; Peng L; Song J; Zhang Y Metallomics; 2010 Jul; 2(7):480-9. PubMed ID: 21072348 [TBL] [Abstract][Full Text] [Related]
15. A stability concept for metal ion coordination to single-stranded nucleic acids and affinities of individual sites. Sigel RK; Sigel H Acc Chem Res; 2010 Jul; 43(7):974-84. PubMed ID: 20235593 [TBL] [Abstract][Full Text] [Related]
16. Predicting the stability constants of metal-ion complexes from first principles. Gutten O; Rulíšek L Inorg Chem; 2013 Sep; 52(18):10347-55. PubMed ID: 24000817 [TBL] [Abstract][Full Text] [Related]
17. Elucidation of primary (alpha(3)N) and vestigial (alpha(5)) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins. Busenlehner LS; Weng TC; Penner-Hahn JE; Giedroc DP J Mol Biol; 2002 Jun; 319(3):685-701. PubMed ID: 12054863 [TBL] [Abstract][Full Text] [Related]
18. Experimentally consistent ion association predicted for metal solutions from free energy simulations. Matthews RP; Naidoo KJ J Phys Chem B; 2010 Jun; 114(21):7286-93. PubMed ID: 20462249 [TBL] [Abstract][Full Text] [Related]
19. Effect of metal ions on some pharmacologically relevant interactions involving fluoroquinolone antibiotics. Seedher N; Agarwal P Drug Metabol Drug Interact; 2010; 25(1-4):17-24. PubMed ID: 21417790 [TBL] [Abstract][Full Text] [Related]
20. MIB: Metal Ion-Binding Site Prediction and Docking Server. Lin YF; Cheng CW; Shih CS; Hwang JK; Yu CS; Lu CH J Chem Inf Model; 2016 Dec; 56(12):2287-2291. PubMed ID: 27976886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]