These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 25785753)

  • 21. Convolutions in the rendition of nose to brain therapeutics from bench to bedside: Feats & fallacies.
    Goel H; Kalra V; Verma SK; Dubey SK; Tiwary AK
    J Control Release; 2022 Jan; 341():782-811. PubMed ID: 34906605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mathematical Modeling and Simulation to Investigate the CNS Transport Characteristics of Nanoemulsion-Based Drug Delivery Following Intranasal Administration.
    Kadakia E; Bottino D; Amiji M
    Pharm Res; 2019 Mar; 36(5):75. PubMed ID: 30923914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intranasal drug targeting of hypocretin-1 (orexin-A) to the central nervous system.
    Dhuria SV; Hanson LR; Frey WH
    J Pharm Sci; 2009 Jul; 98(7):2501-15. PubMed ID: 19025760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin.
    Tashima T
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33171799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Innovative drug delivery strategies to the CNS for the treatment of multiple sclerosis.
    Mwema A; Muccioli GG; des Rieux A
    J Control Release; 2023 Dec; 364():435-457. PubMed ID: 37926243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nasal Drug Delivery of Anticancer Drugs for the Treatment of Glioblastoma: Preclinical and Clinical Trials.
    Bruinsmann FA; Richter Vaz G; de Cristo Soares Alves A; Aguirre T; Raffin Pohlmann A; Stanisçuaski Guterres S; Sonvico F
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31779126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nose to brain transport pathways an overview: potential of nanostructured lipid carriers in nose to brain targeting.
    Selvaraj K; Gowthamarajan K; Karri VVSR
    Artif Cells Nanomed Biotechnol; 2018 Dec; 46(8):2088-2095. PubMed ID: 29282995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CNS drug delivery systems: novel approaches.
    Pathan SA; Iqbal Z; Zaidi SM; Talegaonkar S; Vohra D; Jain GK; Azeem A; Jain N; Lalani JR; Khar RK; Ahmad FJ
    Recent Pat Drug Deliv Formul; 2009 Jan; 3(1):71-89. PubMed ID: 19149731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intranasal Delivery of Nanoformulations: A Potential Way of Treatment for Neurological Disorders.
    Islam SU; Shehzad A; Ahmed MB; Lee YS
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Updated Progress of Nanocarrier-Based Intranasal Drug Delivery Systems for Treatment of Brain Diseases.
    Fan Y; Chen M; Zhang J; Maincent P; Xia X; Wu W
    Crit Rev Ther Drug Carrier Syst; 2018; 35(5):433-467. PubMed ID: 30317945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel vasoconstrictor formulation to enhance intranasal targeting of neuropeptide therapeutics to the central nervous system.
    Dhuria SV; Hanson LR; Frey WH
    J Pharmacol Exp Ther; 2009 Jan; 328(1):312-20. PubMed ID: 18945930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formulation and physiological factors influencing CNS delivery upon intranasal administration.
    Vyas TK; Tiwari SB; Amiji MM
    Crit Rev Ther Drug Carrier Syst; 2006; 23(4):319-47. PubMed ID: 17341201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoneurotherapeutics approach intended for direct nose to brain delivery.
    Md S; Mustafa G; Baboota S; Ali J
    Drug Dev Ind Pharm; 2015; 41(12):1922-34. PubMed ID: 26057769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterotopic mucosal engrafting procedure for direct drug delivery to the brain in mice.
    Kohman RE; Han X; Bleier BS
    J Vis Exp; 2014 Jul; (89):. PubMed ID: 25077554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drug transport into the mammalian brain: the nasal pathway and its specific metabolic barrier.
    Minn A; Leclerc S; Heydel JM; Minn AL; Denizcot C; Cattarelli M; Netter P; Gradinaru D
    J Drug Target; 2002 Jun; 10(4):285-96. PubMed ID: 12164377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration.
    Thorne RG; Pronk GJ; Padmanabhan V; Frey WH
    Neuroscience; 2004; 127(2):481-96. PubMed ID: 15262337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Cerebrospinal Fluid Circulation on Nose-to-Brain Direct Delivery and Distribution of Caffeine in Rats.
    Inoue D; Furubayashi T; Tanaka A; Sakane T; Sugano K
    Mol Pharm; 2020 Nov; 17(11):4067-4076. PubMed ID: 32955898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Advances in Intranasal Administration for Brain-Targeting Delivery: A Comprehensive Review of Lipid-Based Nanoparticles and Stimuli-Responsive Gel Formulations.
    Koo J; Lim C; Oh KT
    Int J Nanomedicine; 2024; 19():1767-1807. PubMed ID: 38414526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intranasal delivery: circumventing the iron curtain to treat neurological disorders.
    Jiang Y; Li Y; Liu X
    Expert Opin Drug Deliv; 2015; 12(11):1717-25. PubMed ID: 26206202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strategies for intranasal delivery of therapeutics for the prevention and treatment of neuroAIDS.
    Hanson LR; Frey WH
    J Neuroimmune Pharmacol; 2007 Mar; 2(1):81-6. PubMed ID: 18040829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.