These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 25785786)
1. Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications. Wang HY; Hua XW; Wu FG; Li B; Liu P; Gu N; Wang Z; Chen Z ACS Appl Mater Interfaces; 2015 Apr; 7(13):7082-92. PubMed ID: 25785786 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of ultrastable and multifunctional gold nanoclusters with enhanced fluorescence and potential anticancer drug delivery application. Zhang X; Wu FG; Liu P; Wang HY; Gu N; Chen Z J Colloid Interface Sci; 2015 Oct; 455():6-15. PubMed ID: 26046981 [TBL] [Abstract][Full Text] [Related]
3. Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy. Huang Y; Lai Y; Shi S; Hao S; Wei J; Chen X Chem Asian J; 2015 Feb; 10(2):370-6. PubMed ID: 25425287 [TBL] [Abstract][Full Text] [Related]
4. Highly Efficient Antibacterial and Pb(II) Removal Effects of Ag-CoFe2O4-GO Nanocomposite. Ma S; Zhan S; Jia Y; Zhou Q ACS Appl Mater Interfaces; 2015 May; 7(19):10576-86. PubMed ID: 25905556 [TBL] [Abstract][Full Text] [Related]
5. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy. Bai J; Liu Y; Jiang X Biomaterials; 2014 Jul; 35(22):5805-13. PubMed ID: 24767788 [TBL] [Abstract][Full Text] [Related]
6. A facile one-pot synthesis of colloidal stable, monodisperse, highly PEGylated CuS@mSiO2 nanocomposites for the combination of photothermal therapy and chemotherapy. Lu F; Wang J; Yang L; Zhu JJ Chem Commun (Camb); 2015 Jun; 51(46):9447-50. PubMed ID: 25958833 [TBL] [Abstract][Full Text] [Related]
7. Post-Synthesis Incorporation of ⁶⁴Cu in CuS Nanocrystals to Radiolabel Photothermal Probes: A Feasible Approach for Clinics. Riedinger A; Avellini T; Curcio A; Asti M; Xie Y; Tu R; Marras S; Lorenzoni A; Rubagotti S; Iori M; Capponi PC; Versari A; Manna L; Seregni E; Pellegrino T J Am Chem Soc; 2015 Dec; 137(48):15145-51. PubMed ID: 26551614 [TBL] [Abstract][Full Text] [Related]
8. Biomineralization-Inspired Synthesis of Copper Sulfide-Ferritin Nanocages as Cancer Theranostics. Wang Z; Huang P; Jacobson O; Wang Z; Liu Y; Lin L; Lin J; Lu N; Zhang H; Tian R; Niu G; Liu G; Chen X ACS Nano; 2016 Mar; 10(3):3453-60. PubMed ID: 26871955 [TBL] [Abstract][Full Text] [Related]
9. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Li Y; Lu W; Huang Q; Huang M; Li C; Chen W Nanomedicine (Lond); 2010 Oct; 5(8):1161-71. PubMed ID: 21039194 [TBL] [Abstract][Full Text] [Related]
10. Single cytidine units-templated syntheses of multi-colored water-soluble Au nanoclusters. Jiang H; Zhang Y; Wang X Nanoscale; 2014 Sep; 6(17):10355-62. PubMed ID: 25074428 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of water-soluble Cu/PAA composite flowers and their antibacterial activities. Li B; Li Y; Wu Y; Zhao Y Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():205-11. PubMed ID: 24411370 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and characterization of bovine serum albumin-copper nanocomposites for antibacterial applications. Rastogi L; Arunachalam J Colloids Surf B Biointerfaces; 2013 Aug; 108():134-41. PubMed ID: 23531744 [TBL] [Abstract][Full Text] [Related]
13. Near infrared Ag/Au alloy nanoclusters: tunable photoluminescence and cellular imaging. Wang C; Xu L; Xu X; Cheng H; Sun H; Lin Q; Zhang C J Colloid Interface Sci; 2014 Feb; 416():274-9. PubMed ID: 24370431 [TBL] [Abstract][Full Text] [Related]
14. In Vitro and In Vivo Evaluation of Pectin/Copper Exchanged Faujasite Composite Membranes. Ninan N; Muthiah M; Park IK; Elain A; Wong TW; Thomas S; Grohens Y J Biomed Nanotechnol; 2015 Sep; 11(9):1550-67. PubMed ID: 26485926 [TBL] [Abstract][Full Text] [Related]
15. Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Li B; Wang Q; Zou R; Liu X; Xu K; Li W; Hu J Nanoscale; 2014 Mar; 6(6):3274-82. PubMed ID: 24509646 [TBL] [Abstract][Full Text] [Related]
16. Near-Infrared-Activated Lysosome Pathway Death Induced by ROS Generated from Layered Double Hydroxide-Copper Sulfide Nanocomposites. Liu CG; Tang HX; Zheng X; Yang DY; Zhang Y; Zhang JT; Kankala RK; Wang SB; Liu G; Chen AZ ACS Appl Mater Interfaces; 2020 Sep; 12(36):40673-40683. PubMed ID: 32786245 [TBL] [Abstract][Full Text] [Related]
17. Facile synthesis of red emitting 3-aminophenylboronic acid functionalized copper nanoclusters for rapid, selective and highly sensitive detection of glycoproteins. Li XG; Zhang F; Gao Y; Zhou QM; Zhao Y; Li Y; Huo JZ; Zhao XJ Biosens Bioelectron; 2016 Dec; 86():270-276. PubMed ID: 27376198 [TBL] [Abstract][Full Text] [Related]
18. Extracellular biosynthesis of copper sulfide nanoparticles by Shewanella oneidensis MR-1 as a photothermal agent. Zhou NQ; Tian LJ; Wang YC; Li DB; Li PP; Zhang X; Yu HQ Enzyme Microb Technol; 2016 Dec; 95():230-235. PubMed ID: 27866620 [TBL] [Abstract][Full Text] [Related]
19. Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis. Wang C; Wang C; Xu L; Cheng H; Lin Q; Zhang C Nanoscale; 2014; 6(3):1775-81. PubMed ID: 24352741 [TBL] [Abstract][Full Text] [Related]
20. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. Wang S; Riedinger A; Li H; Fu C; Liu H; Li L; Liu T; Tan L; Barthel MJ; Pugliese G; De Donato F; Scotto D'Abbusco M; Meng X; Manna L; Meng H; Pellegrino T ACS Nano; 2015 Feb; 9(2):1788-800. PubMed ID: 25603353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]