These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25786163)

  • 1. Cyclic comonomers for the synthesis of carboxylic acid and amine functionalized poly(L-lactic acid).
    Heiny M; Shastri VP
    Molecules; 2015 Mar; 20(3):4764-79. PubMed ID: 25786163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradable polyesters through chain linking for packaging and biomedical applications.
    Seppälä JV; Helminen AO; Korhonen H
    Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel degradable polymers combining D-gluconic acid, a sugar of vegetal origin, with lactic and glycolic acids.
    Marcincinova-Benabdillah K; Boustta M; Coudane J; Vert M
    Biomacromolecules; 2001; 2(4):1279-84. PubMed ID: 11777404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactic acid-based functionalized polymers via copolymerization and chemical modification.
    Saulnier B; Ponsart S; Coudane J; Garreau H; Vert M
    Macromol Biosci; 2004 Mar; 4(3):232-7. PubMed ID: 15468212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of poly(DL-lactide)-grafted gelatins as bioabsorbable amphiphilic polymers.
    Ma J; Cao H; Li Y; Li Y
    J Biomater Sci Polym Ed; 2002; 13(1):67-80. PubMed ID: 12003076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target-Specific Capture of Environmentally Relevant Gaseous Aldehydes and Carboxylic Acids with Functional Nanoparticles.
    Campbell ML; Guerra FD; Dhulekar J; Alexis F; Whitehead DC
    Chemistry; 2015 Oct; 21(42):14834-42. PubMed ID: 26331393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clickable degradable aliphatic polyesters via copolymerization with alkyne epoxy esters: synthesis and postfunctionalization with organic dyes.
    Teske NS; Voigt J; Shastri VP
    J Am Chem Soc; 2014 Jul; 136(29):10527-33. PubMed ID: 24972035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ring opening polymerization of L-lactide initiated by creatinine.
    Wang C; Li H; Zhao X
    Biomaterials; 2004 Dec; 25(27):5797-801. PubMed ID: 15172491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices.
    Cammas S; Béar MM; Moine L; Escalup R; Ponchel G; Kataoka K; Guérin P
    Int J Biol Macromol; 1999; 25(1-3):273-82. PubMed ID: 10416675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Functionalized Cyclic Lactide Monomer for Synthesis of Water-Soluble Poly(Lactic Acid) and Amphiphilic Diblock Poly(Lactic Acid).
    Zhang X; Dai Y
    Macromol Rapid Commun; 2017 Jan; 38(2):. PubMed ID: 27859972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiopaque organic-inorganic hybrids based on poly(D,L-lactide).
    Mazzocchetti L; Sandri S; Scandola M; Bergia A; Zuccheri G
    Biomacromolecules; 2007 Feb; 8(2):672-8. PubMed ID: 17291091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and properties of poly(L-lactide)-b-poly (L-phenylalanine) hybrid copolymers.
    Planellas M; Puiggalí J
    Int J Mol Sci; 2014 Jul; 15(8):13247-66. PubMed ID: 25075980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalytic fabrication of fast-degradable, water-soluble polycarbonate functionalized with tertiary amine groups in backbone.
    Wang HF; Su W; Zhang C; Luo XH; Feng J
    Biomacromolecules; 2010 Oct; 11(10):2550-7. PubMed ID: 20836520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(α-hydroxy acid)s and poly(α-hydroxy acid-co-α-amino acid)s derived from amino acid.
    Basu A; Kunduru KR; Katzhendler J; Domb AJ
    Adv Drug Deliv Rev; 2016 Dec; 107():82-96. PubMed ID: 27527666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereogradient Poly(Lactic Acid) from meso-Lactide/L-Lactide Mixtures.
    Hador R; Shuster M; Venditto V; Kol M
    Angew Chem Int Ed Engl; 2022 Oct; 61(40):e202207652. PubMed ID: 35789524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple synthetic route to the formation of a block copolymer of poly(lactic-co-glycolic acid) and polylysine for the fabrication of functionalized, degradable structures for biomedical applications.
    Lavik EB; Hrkach JS; Lotan N; Nazarov R; Langer R
    J Biomed Mater Res; 2001 May; 58(3):291-4. PubMed ID: 11319743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polylactides-Methods of synthesis and characterization.
    Pretula J; Slomkowski S; Penczek S
    Adv Drug Deliv Rev; 2016 Dec; 107():3-16. PubMed ID: 27174153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Readily controllable step-growth polymerization method for poly(lactic acid) copolymers having a high glass transition temperature.
    Inkinen S; Stolt M; Södergård A
    Biomacromolecules; 2010 May; 11(5):1196-201. PubMed ID: 20345130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic poly(beta-hydroxyalkanoates) with carboxylic acid or primary amine pendent groups and their complexes.
    Rossignol H; Boustta M; Vert M
    Int J Biol Macromol; 1999; 25(1-3):255-64. PubMed ID: 10416673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of PLA/GA polymers: increasing complexity.
    Vert M; Mauduit J; Li S
    Biomaterials; 1994 Dec; 15(15):1209-13. PubMed ID: 7703316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.