BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25786227)

  • 1. Isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology for effective removal of Cr(VI) using fungal biomass.
    S MS; M EA; Chidambaram R
    PLoS One; 2015; 10(3):e0116884. PubMed ID: 25786227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosorption of Cr(VI) by Ceratocystis paradoxa MSR2 using isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology.
    Samuel MS; E A Abigail M; Ramalingam C
    PLoS One; 2015; 10(3):e0118999. PubMed ID: 25822726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosorption of hexavalent chromium from aqueous medium with Opuntia biomass.
    Fernández-López JA; Angosto JM; Avilés MD
    ScientificWorldJournal; 2014; 2014():670249. PubMed ID: 24982975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosorption of Cr(VI) by free and immobilized Pediastrum boryanum biomass: equilibrium, kinetic, and thermodynamic studies.
    Ozer TB; Erkaya IA; Udoh AU; Duygu DY; Akbulut A; Bayramoglu G; Arica MY
    Environ Sci Pollut Res Int; 2011 Aug; 19(7):2983-93. PubMed ID: 22374187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic parameters and mechanisms of the batch biosorption of Cr(VI) and Cr(III) onto Leersia hexandra Swartz biomass.
    Li J; Lin Q; Zhang X; Yan Y
    J Colloid Interface Sci; 2009 May; 333(1):71-7. PubMed ID: 19251269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium alginate entrapped Eupatorium adenophorum Sprengel stems powder for chromium(VI) biosorption in aqueous mediums.
    Aryal M
    PLoS One; 2019; 14(8):e0213477. PubMed ID: 31419220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of Cr(VI) biosorption onto
    Mondal NK; Samanta A; Dutta S; Chattoraj S
    J Genet Eng Biotechnol; 2017 Jun; 15(1):151-160. PubMed ID: 30647651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-enzymatic reduction of Cr (VI) and it's effective biosorption using heat-inactivated biomass: A fermentation waste material.
    Antony GS; Manna A; Baskaran S; Puhazhendi P; Ramchary A; Niraikulam A; Ramudu KN
    J Hazard Mater; 2020 Jun; 392():122257. PubMed ID: 32109791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and thermodynamic studies of the biosorption of Cr(VI) by Pinus sylvestris Linn.
    Ucun H; Bayhan YK; Kaya Y
    J Hazard Mater; 2008 May; 153(1-2):52-9. PubMed ID: 17875365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Cr(VI) onto Ficus carica biosorbent from water.
    Gupta VK; Pathania D; Agarwal S; Sharma S
    Environ Sci Pollut Res Int; 2013 Apr; 20(4):2632-44. PubMed ID: 22983603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorption of Cr(VI) and Zn(II) ions from aqueous solution onto the solid biodiesel waste residue: mechanistic, kinetic and thermodynamic studies.
    Muthusamy S; Venkatachalam S; Jeevamani PM; Rajarathinam N
    Environ Sci Pollut Res Int; 2014 Jan; 21(1):593-608. PubMed ID: 23812789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosorption of nickel(II) from aqueous solution by Aspergillus niger: response surface methodology and isotherm study.
    Amini M; Younesi H; Bahramifar N
    Chemosphere; 2009 Jun; 75(11):1483-91. PubMed ID: 19285703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexavalent chromium sorption by biomass of chromium tolerant Pythium sp.
    Kavita B; Limbachia J; Keharia H
    J Basic Microbiol; 2011 Apr; 51(2):173-82. PubMed ID: 21298678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of chromium biosorption by Mesorhizobium amorphae strain CCNWGS0123 in single and binary mixtures.
    Xie P; Hao X; Mohamad OA; Liang J; Wei G
    Appl Biochem Biotechnol; 2013 Jan; 169(2):570-87. PubMed ID: 23269638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosorption of Cr (VI) ions from electroplating industrial effluent using immobilized Aspergillus niger biomass.
    Chhikara S; Dhankhar R
    J Environ Biol; 2008 Sep; 29(5):773-8. PubMed ID: 19295081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosorption of Cr(VI) from water using biomass of Aeromonas hydrophila: central composite design for optimization of process variables.
    Ranjan D; Srivastava P; Talat M; Hasan SH
    Appl Biochem Biotechnol; 2009 Sep; 158(3):524-39. PubMed ID: 19031053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass.
    Uluozlu OD; Sari A; Tuzen M; Soylak M
    Bioresour Technol; 2008 May; 99(8):2972-80. PubMed ID: 17714944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger.
    Park D; Yun YS; Jo JH; Park JM
    Water Res; 2005 Feb; 39(4):533-40. PubMed ID: 15707625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling biosorption of Cr(VI) onto Ulva compressa L. from aqueous solutions.
    Aid A; Amokrane S; Nibou D; Mekatel E; Trari M; Hulea V
    Water Sci Technol; 2018 Jan; 77(1-2):60-69. PubMed ID: 29339604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricus bisporus.
    Ertugay N; Bayhan YK
    J Hazard Mater; 2008 Jun; 154(1-3):432-9. PubMed ID: 18078714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.