These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Reversal of multidrug resistance by two nordihydroguaiaretic acid derivatives, M4N and maltose-M3N, and their use in combination with doxorubicin or paclitaxel. Chang CC; Liang YC; Klutz A; Hsu CI; Lin CF; Mold DE; Chou TC; Lee YC; Huang RC Cancer Chemother Pharmacol; 2006 Nov; 58(5):640-53. PubMed ID: 16544145 [TBL] [Abstract][Full Text] [Related]
43. Nanomedicine-based paclitaxel induced apoptotic signaling pathways in A562 leukemia cancer cells. Wang Y; Zhou L; Xiao M; Sun ZL; Zhang CY Colloids Surf B Biointerfaces; 2017 Jan; 149():16-22. PubMed ID: 27716527 [TBL] [Abstract][Full Text] [Related]
44. Acquisition of chemoresistant phenotype by overexpression of the antiapoptotic gene testosterone-repressed prostate message-2 in prostate cancer xenograft models. Miyake H; Nelson C; Rennie PS; Gleave ME Cancer Res; 2000 May; 60(9):2547-54. PubMed ID: 10811138 [TBL] [Abstract][Full Text] [Related]
45. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Wang H; Zhao Y; Wu Y; Hu YL; Nan K; Nie G; Chen H Biomaterials; 2011 Nov; 32(32):8281-90. PubMed ID: 21807411 [TBL] [Abstract][Full Text] [Related]
46. CTEN/tensin 4 expression induces sensitivity to paclitaxel in prostate cancer. Li Y; Mizokami A; Izumi K; Narimoto K; Shima T; Zhang J; Dai J; Keller ET; Namiki M Prostate; 2010 Jan; 70(1):48-60. PubMed ID: 19725034 [TBL] [Abstract][Full Text] [Related]
47. Paclitaxel-loaded polymeric micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) triblock copolymers: in vitro and in vivo evaluation. Zhang L; He Y; Ma G; Song C; Sun H Nanomedicine; 2012 Aug; 8(6):925-34. PubMed ID: 22101107 [TBL] [Abstract][Full Text] [Related]
48. Codelivery of small molecule hedgehog inhibitor and miRNA for treating pancreatic cancer. Kumar V; Mondal G; Slavik P; Rachagani S; Batra SK; Mahato RI Mol Pharm; 2015 Apr; 12(4):1289-98. PubMed ID: 25679326 [TBL] [Abstract][Full Text] [Related]
49. D-α-tocopherol polyethylene glycol succinate-based redox-sensitive paclitaxel prodrug for overcoming multidrug resistance in cancer cells. Bao Y; Guo Y; Zhuang X; Li D; Cheng B; Tan S; Zhang Z Mol Pharm; 2014 Sep; 11(9):3196-209. PubMed ID: 25102234 [TBL] [Abstract][Full Text] [Related]
50. Effect of polymer degradation on prolonged release of paclitaxel from filomicelles of polylactide/poly(ethylene glycol) block copolymers. Jelonek K; Li S; Kasperczyk J; Wu X; Orchel A Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():918-925. PubMed ID: 28415547 [TBL] [Abstract][Full Text] [Related]
51. Mixed micelles of PEG(2000)-DSPE and vitamin-E TPGS for concurrent delivery of paclitaxel and parthenolide: enhanced chemosenstization and antitumor efficacy against non-small cell lung cancer (NSCLC) cell lines. Gill KK; Kaddoumi A; Nazzal S Eur J Pharm Sci; 2012 May; 46(1-2):64-71. PubMed ID: 22369858 [TBL] [Abstract][Full Text] [Related]
52. Poly(ethylene glycol)-block-poly(2-methyl-2-benzoxycarbonyl-propylene carbonate) micelles for rapamycin delivery: in vitro characterization and biodistribution. Lu W; Li F; Mahato RI J Pharm Sci; 2011 Jun; 100(6):2418-29. PubMed ID: 21264854 [TBL] [Abstract][Full Text] [Related]
53. Gambogic acid-loaded pH-sensitive mixed micelles for overcoming breast cancer resistance. Wang S; Yang Y; Wang Y; Chen M Int J Pharm; 2015 Nov; 495(2):840-8. PubMed ID: 26407923 [TBL] [Abstract][Full Text] [Related]
54. Reconstituted high density lipoprotein mediated targeted co-delivery of HZ08 and paclitaxel enhances the efficacy of paclitaxel in multidrug-resistant MCF-7 breast cancer cells. Zhang F; Wang X; Xu X; Li M; Zhou J; Wang W Eur J Pharm Sci; 2016 Sep; 92():11-21. PubMed ID: 27343697 [TBL] [Abstract][Full Text] [Related]
55. 3,3'-diindolylmethane and paclitaxel act synergistically to promote apoptosis in HER2/Neu human breast cancer cells. McGuire KP; Ngoubilly N; Neavyn M; Lanza-Jacoby S J Surg Res; 2006 May; 132(2):208-13. PubMed ID: 16580691 [TBL] [Abstract][Full Text] [Related]
56. Reversal of multidrug resistance by PEG-b-PLA polymeric micelles loaded with paclitaxel. Batrakova EV Nanomedicine (Lond); 2011 Nov; 6(9):1493-4. PubMed ID: 22187741 [No Abstract] [Full Text] [Related]
57. Correction: Paclitaxel-Loaded PEG-PE-Based Micellar Nanopreparations Targeted with Tumor-Specific Landscape Phage Fusion Protein Enhance Apoptosis and Efficiently Reduce Tumors. Mol Cancer Ther; 2015 Jun; 14(6):1517. PubMed ID: 25953420 [No Abstract] [Full Text] [Related]
58. Anti-tumour effects of lapatinib on HER2-positive canine prostatic carcinoma cell lines. Kaji K; Motegi T; Yonezawa T; Momoi Y; Maeda S Open Vet J; 2024 May; 14(5):1259-1268. PubMed ID: 38938437 [TBL] [Abstract][Full Text] [Related]
59. The immunomodulatory function and antitumor effect of disulfiram: paving the way for novel cancer therapeutics. Zhang S; Zong Y; Chen L; Li Q; Li Z; Meng R Discov Oncol; 2023 Jun; 14(1):103. PubMed ID: 37326784 [TBL] [Abstract][Full Text] [Related]
60. Prostate Cancer Cells Are Sensitive to Lysosomotropic Agent Siramesine through Generation Reactive Oxygen Species and in Combination with Tyrosine Kinase Inhibitors. Garcia EA; Bhatti I; Henson ES; Gibson SB Cancers (Basel); 2022 Nov; 14(22):. PubMed ID: 36428570 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]