These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25786396)

  • 1. Surface chemistry and effects on bone regeneration of a novel biomimetic synthetic bone filler.
    Morra M; Giavaresi G; Sartori M; Ferrari A; Parrilli A; Bollati D; Baena RR; Cassinelli C; Fini M
    J Mater Sci Mater Med; 2015 Apr; 26(4):159. PubMed ID: 25786396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Cytokine Expression and In Vivo Healing and Inflammatory Response to a Collagen-Coated Synthetic Bone Filler.
    Bollati D; Morra M; Cassinelli C; Lupi SM; Rodriguez Y Baena R
    Biomed Res Int; 2016; 2016():6427681. PubMed ID: 27195293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brushite-based calcium phosphate cement with multichannel hydroxyapatite granule loading for improved bone regeneration.
    Sarkar SK; Lee BY; Padalhin AR; Sarker A; Carpena N; Kim B; Paul K; Choi HJ; Bae SH; Lee BT
    J Biomater Appl; 2016 Jan; 30(6):823-37. PubMed ID: 26333790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of biomimetically synthesized Hap-Gel nanocomposites as bone substitute.
    Bera T; Vivek AN; Saraf SK; Ramachandrarao P
    Biomed Mater; 2008 Jun; 3(2):025001. PubMed ID: 18458374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo performance of combinations of autograft, demineralized bone matrix, and tricalcium phosphate in a rabbit femoral defect model.
    Kim J; McBride S; Dean DD; Sylvia VL; Doll BA; Hollinger JO
    Biomed Mater; 2014 Jun; 9(3):035010. PubMed ID: 24784998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone regeneration in rabbit calvaria with novel monetite granules.
    Tamimi F; Torres J; Kathan C; Baca R; Clemente C; Blanco L; Lopez Cabarcos E
    J Biomed Mater Res A; 2008 Dec; 87(4):980-5. PubMed ID: 18257086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Needle-like ion-doped hydroxyapatite crystals influence osteogenic properties of PCL composite scaffolds.
    Guarino V; Veronesi F; Marrese M; Giavaresi G; Ronca A; Sandri M; Tampieri A; Fini M; Ambrosio L
    Biomed Mater; 2016 Feb; 11(1):015018. PubMed ID: 26928781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A glass-reinforced hydroxyapatite and surgical-grade calcium sulfate for bone regeneration: In vivo biological behavior in a sheep model.
    Cortez PP; Silva MA; Santos M; Armada-da-Silva P; Afonso A; Lopes MA; Santos JD; Maurício AC
    J Biomater Appl; 2012 Aug; 27(2):201-17. PubMed ID: 21602251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new HA/TTCP material for bone augmentation: an in vivo histological pilot study in primates sinus grafting.
    Piccinini M; Rebaudi A; Sglavo VM; Bucciotti F; Pierfrancesco R
    Implant Dent; 2013 Feb; 22(1):83-90. PubMed ID: 23296033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.
    Guo X; Zheng Q; Kulbatski I; Yuan Q; Yang S; Shao Z; Wang H; Xiao B; Pan Z; Tang S
    Biomed Mater; 2006 Sep; 1(3):93-9. PubMed ID: 18458388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic octacalcium phosphate augments bone regeneration correlated with its content in collagen scaffold.
    Kawai T; Anada T; Honda Y; Kamakura S; Matsui K; Matsui A; Sasaki K; Morimoto S; Echigo S; Suzuki O
    Tissue Eng Part A; 2009 Jan; 15(1):23-32. PubMed ID: 18637727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalized biomimetic calcium phosphates for bone tissue repair.
    Bigi A; Boanini E
    J Appl Biomater Funct Mater; 2017 Nov; 15(4):e313-e325. PubMed ID: 28574097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic bone mimetic matrix-mediated in situ bone tissue formation through host cell recruitment.
    Shih YR; Phadke A; Yamaguchi T; Kang H; Inoue N; Masuda K; Varghese S
    Acta Biomater; 2015 Jun; 19():1-9. PubMed ID: 25805106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cemented cup stability during lever-out testing after acetabular bone impaction grafting with bone graft substitutes mixes containing morselized cancellous bone and tricalcium phosphate--hydroxyapatite granules.
    Arts JJ; Schreurs BW; Buma P; Verdonschot N
    Proc Inst Mech Eng H; 2005 Jul; 219(4):257-63. PubMed ID: 16050216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone in-growth induced by biphasic calcium phosphate ceramic in femoral defect of dogs.
    Manjubala I; Sastry TP; Kumar RV
    J Biomater Appl; 2005 Apr; 19(4):341-60. PubMed ID: 15788429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering.
    Zhou C; Ye X; Fan Y; Ma L; Tan Y; Qing F; Zhang X
    Biofabrication; 2014 Sep; 6(3):035013. PubMed ID: 24873777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone.
    Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration.
    Meng D; Dong L; Wen Y; Xie Q
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():266-72. PubMed ID: 25492197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone augmentation with autologous periosteal cells and two different calcium phosphate scaffolds under an occlusive titanium barrier: an experimental study in rabbits.
    Maréchal M; Eyckmans J; Schrooten J; Schepers E; Luyten FP; van Steenberghe D
    J Periodontol; 2008 May; 79(5):896-904. PubMed ID: 18454669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.