These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25786396)

  • 21. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of hydroxyapatite/calcium phosphate glass scaffold and its surface modification with bovine serum albumin on 1-wall intrabony defects of beagle dogs: a preliminary study.
    Um YJ; Jung UW; Chae GJ; Kim CS; Lee YK; Cho KS; Kim CK; Choi SH
    Biomed Mater; 2008 Dec; 3(4):044113. PubMed ID: 19029611
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel ceramic bone replacement material Osbone® in a comparative in vitro study with osteoblasts.
    Bernhardt A; Lode A; Peters F; Gelinsky M
    Clin Oral Implants Res; 2011 Jun; 22(6):651-7. PubMed ID: 21044164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MBCP biphasic calcium phosphate granules and tissucol fibrin sealant in rabbit femoral defects: the effect of fibrin on bone ingrowth.
    Le Guehennec L; Goyenvalle E; Aguado E; Pilet P; Bagot D'Arc M; Bilban M; Spaethe R; Daculsi G
    J Mater Sci Mater Med; 2005 Jan; 16(1):29-35. PubMed ID: 15754141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of a tunnel-structured β-tricalcium phosphate graft material on periodontal regeneration: a pilot study in a canine one-wall intrabony defect model.
    Matsuura T; Akizuki T; Hoshi S; Ikawa T; Kinoshita A; Sunaga M; Oda S; Kuboki Y; Izumi Y
    J Periodontal Res; 2015 Jun; 50(3):347-55. PubMed ID: 25040655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of calcium chloride and aprotinin in the in vivo biological performance of a composite combining biphasic calcium phosphate granules and fibrin sealant.
    Le Guehennec L; Goyenvalle E; Aguado E; Pilet P; Spaethe R; Daculsi G
    J Mater Sci Mater Med; 2007 Aug; 18(8):1489-95. PubMed ID: 17387594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of a bioresorbable nano-crystalline hydroxyapatite paste in acetabular bone impaction grafting.
    Chris Arts JJ; Verdonschot N; Schreurs BW; Buma P
    Biomaterials; 2006 Mar; 27(7):1110-8. PubMed ID: 16098583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo response to starch-based scaffolds designed for bone tissue engineering applications.
    Salgado AJ; Coutinho OP; Reis RL; Davies JE
    J Biomed Mater Res A; 2007 Mar; 80(4):983-9. PubMed ID: 17109411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone engineering of the rabbit ulna.
    El-Ghannam A; Cunningham L; Pienkowski D; Hart A
    J Oral Maxillofac Surg; 2007 Aug; 65(8):1495-502. PubMed ID: 17656274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Cellular culture of osteoblasts and fibroblasts on porous calcium-phosphate bone substitutes].
    Chouteau J; Bignon A; Chavassieux P; Chevalier J; Melin M; Fantozzi G; Boivin G; Hartmann D; Carret JP
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Feb; 89(1):44-52. PubMed ID: 12610435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo assessment of hydroxyapatite and silicate-substituted hydroxyapatite granules using an ovine defect model.
    Patel N; Brooks RA; Clarke MT; Lee PM; Rushton N; Gibson IR; Best SM; Bonfield W
    J Mater Sci Mater Med; 2005 May; 16(5):429-40. PubMed ID: 15875253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A platelet-rich plasma-based membrane as a periosteal substitute with enhanced osteogenic and angiogenic properties: a new concept for bone repair.
    El Backly RM; Zaky SH; Muraglia A; Tonachini L; Brun F; Canciani B; Chiapale D; Santolini F; Cancedda R; Mastrogiacomo M
    Tissue Eng Part A; 2013 Jan; 19(1-2):152-65. PubMed ID: 22849574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Injectable biphasic calcium phosphate bioceramic: The HYDROS concept.
    Baroth S; Bourges X; Goyenvalle E; Aguado E; Daculsi G
    Biomed Mater Eng; 2009; 19(1):71-6. PubMed ID: 19458448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bone marrow mesenchymal stem cells, platelet-rich plasma and nanohydroxyapatite-type I collagen beads were integral parts of biomimetic bone substitutes for bone regeneration.
    Lin BN; Whu SW; Chen CH; Hsu FY; Chen JC; Liu HW; Chen CH; Liou HM
    J Tissue Eng Regen Med; 2013 Nov; 7(11):841-54. PubMed ID: 22744907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of a FGF-2 and calcium phosphate composite layer on a hydroxyapatite ceramic for promoting bone formation.
    Sogo Y; Ito A; Onoguchi M; Oyane A; Tsurushima H; Ichinose N
    Biomed Mater; 2007 Sep; 2(3):S175-80. PubMed ID: 18458464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics.
    Kasten P; Vogel J; Luginbühl R; Niemeyer P; Weiss S; Schneider S; Kramer M; Leo A; Richter W
    Cells Tissues Organs; 2006; 183(2):68-79. PubMed ID: 17053323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone regeneration potential of a soybean-based filler: experimental study in a rabbit cancellous bone defects.
    Giavaresi G; Fini M; Salvage J; Nicoli Aldini N; Giardino R; Ambrosio L; Nicolais L; Santin M
    J Mater Sci Mater Med; 2010 Feb; 21(2):615-26. PubMed ID: 19771493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone formation in a carbonate-substituted hydroxyapatite implant is inhibited by zoledronate: the importance of bioresorption to osteoconduction.
    Spence G; Phillips S; Campion C; Brooks R; Rushton N
    J Bone Joint Surg Br; 2008 Dec; 90(12):1635-40. PubMed ID: 19043138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo study of porous strontium-doped calcium polyphosphate scaffolds for bone substitute applications.
    Tian M; Chen F; Song W; Song Y; Chen Y; Wan C; Yu X; Zhang X
    J Mater Sci Mater Med; 2009 Jul; 20(7):1505-12. PubMed ID: 19267259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A feasibility study evaluating an in situ formed synthetic biodegradable membrane for guided bone regeneration in dogs.
    Jung RE; Lecloux G; Rompen E; Ramel CF; Buser D; Hammerle CH
    Clin Oral Implants Res; 2009 Feb; 20(2):151-61. PubMed ID: 19191792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.