BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 25786618)

  • 21. Assessing the heterogeneity level in lipid nanoparticles for siRNA delivery: size-based separation, compositional heterogeneity, and impact on bioperformance.
    Zhang J; Pei Y; Zhang H; Wang L; Arrington L; Zhang Y; Glass A; Leone AM
    Mol Pharm; 2013 Jan; 10(1):397-405. PubMed ID: 23210488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems.
    Leung AK; Tam YY; Chen S; Hafez IM; Cullis PR
    J Phys Chem B; 2015 Jul; 119(28):8698-706. PubMed ID: 26087393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionizable amino lipid interactions with POPC: implications for lipid nanoparticle function.
    Ramezanpour M; Schmidt ML; Bodnariuc I; Kulkarni JA; Leung SSW; Cullis PR; Thewalt JL; Tieleman DP
    Nanoscale; 2019 Aug; 11(30):14141-14146. PubMed ID: 31334542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polydispersity characterization of lipid nanoparticles for siRNA delivery using multiple detection size-exclusion chromatography.
    Zhang J; Haas RM; Leone AM
    Anal Chem; 2012 Jul; 84(14):6088-96. PubMed ID: 22816783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of cationic lipid composition on uptake and intracellular processing of lipid nanoparticle formulations of siRNA.
    Lin PJ; Tam YY; Hafez I; Sandhu A; Chen S; Ciufolini MA; Nabi IR; Cullis PR
    Nanomedicine; 2013 Feb; 9(2):233-46. PubMed ID: 22698807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipid nanoparticle siRNA systems for silencing the androgen receptor in human prostate cancer in vivo.
    Lee JB; Zhang K; Tam YY; Tam YK; Belliveau NM; Sung VY; Lin PJ; LeBlanc E; Ciufolini MA; Rennie PS; Cullis PR
    Int J Cancer; 2012 Sep; 131(5):E781-90. PubMed ID: 22095615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The landscape of nanoparticle-based siRNA delivery and therapeutic development.
    Moazzam M; Zhang M; Hussain A; Yu X; Huang J; Huang Y
    Mol Ther; 2024 Feb; 32(2):284-312. PubMed ID: 38204162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipid Nanoparticles Containing siRNA Synthesized by Microfluidic Mixing Exhibit an Electron-Dense Nanostructured Core.
    Leung AK; Hafez IM; Baoukina S; Belliveau NM; Zhigaltsev IV; Afshinmanesh E; Tieleman DP; Hansen CL; Hope MJ; Cullis PR
    J Phys Chem C Nanomater Interfaces; 2012 Aug; 116(34):18440-18450. PubMed ID: 22962627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Which Lipid Nanoparticle (LNP) Designs Work? A Simple Kinetic Model Linking LNP Chemical Structure to In Vivo Delivery Performance.
    Roh EH; Sullivan MO; Epps TH
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):13399-13410. PubMed ID: 38466900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pieter Cullis' quest for a lipid-based, fusogenic delivery system for nucleic acid therapeutics: success with siRNA so what about mRNA?
    Tam YK; Madden TD; Hope MJ
    J Drug Target; 2016 Nov; 24(9):774-779. PubMed ID: 27588674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA.
    Belliveau NM; Huft J; Lin PJ; Chen S; Leung AK; Leaver TJ; Wild AW; Lee JB; Taylor RJ; Tam YK; Hansen CL; Cullis PR
    Mol Ther Nucleic Acids; 2012 Aug; 1(8):e37. PubMed ID: 23344179
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lipid-based nanoparticle formulations for small molecules and RNA drugs.
    Ickenstein LM; Garidel P
    Expert Opin Drug Deliv; 2019 Nov; 16(11):1205-1226. PubMed ID: 31530041
    [No Abstract]   [Full Text] [Related]  

  • 33. Recent advances in siRNA delivery mediated by lipid-based nanoparticles.
    Yonezawa S; Koide H; Asai T
    Adv Drug Deliv Rev; 2020; 154-155():64-78. PubMed ID: 32768564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Small molecule ligands for enhanced intracellular delivery of lipid nanoparticle formulations of siRNA.
    Tam YY; Chen S; Zaifman J; Tam YK; Lin PJ; Ansell S; Roberge M; Ciufolini MA; Cullis PR
    Nanomedicine; 2013 Jul; 9(5):665-74. PubMed ID: 23219877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CHARMM-GUI Membrane Builder for Lipid Nanoparticles with Ionizable Cationic Lipids and PEGylated Lipids.
    Park S; Choi YK; Kim S; Lee J; Im W
    bioRxiv; 2021 Jun; ():. PubMed ID: 34189527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of cholesterol-conjugated ionizable amino lipids with biomembranes: lipid polymorphism, structure-activity relationship, and implications for siRNA delivery.
    Zhang J; Fan H; Levorse DA; Crocker LS
    Langmuir; 2011 Aug; 27(15):9473-83. PubMed ID: 21648950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipid nanoparticles for siRNA delivery in cancer treatment.
    El Moukhtari SH; Garbayo E; Amundarain A; Pascual-Gil S; Carrasco-León A; Prosper F; Agirre X; Blanco-Prieto MJ
    J Control Release; 2023 Sep; 361():130-146. PubMed ID: 37532145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environment-Responsive Lipid/siRNA Nanoparticles for Cancer Therapy.
    Lu ZR; Laney VEA; Hall R; Ayat N
    Adv Healthc Mater; 2021 Mar; 10(5):e2001294. PubMed ID: 33615743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ionization behavior of amino lipids for siRNA delivery: determination of ionization constants, SAR, and the impact of lipid pKa on cationic lipid-biomembrane interactions.
    Zhang J; Fan H; Levorse DA; Crocker LS
    Langmuir; 2011 Mar; 27(5):1907-14. PubMed ID: 21250743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Delivery of Globotriaosylceramide Synthase siRNA using Polyhistidine-Incorporated Lipid Nanoparticles.
    Kim IG; Jung WH; You G; Lee H; Shin YJ; Lim SW; Chung BH; Mok H
    Macromol Biosci; 2023 Apr; 23(4):e2200423. PubMed ID: 36728673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.