These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25786712)

  • 1. Rheology of Lignocellulose Suspensions and Impact of Hydrolysis: A Review.
    Nguyen TC; Anne-Archard D; Fillaudeau L
    Adv Biochem Eng Biotechnol; 2015; 149():325-57. PubMed ID: 25786712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocatalytic conversion of lignocellulose to platform chemicals.
    Jäger G; Büchs J
    Biotechnol J; 2012 Sep; 7(9):1122-36. PubMed ID: 22829529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ rheometry of concentrated cellulose fibre suspensions and relationships with enzymatic hydrolysis.
    Nguyen TC; Anne-Archard D; Coma V; Cameleyre X; Lombard E; Binet C; Nouhen A; To KA; Fillaudeau L
    Bioresour Technol; 2013 Apr; 133():563-72. PubMed ID: 23466624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological characterization of dilute acid pretreated softwood.
    Wiman M; Palmqvist B; Tornberg E; Lidén G
    Biotechnol Bioeng; 2011 May; 108(5):1031-41. PubMed ID: 21449021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving rheology and enzymatic hydrolysis of high-solid corncob slurries by adding lignosulfonate and long-chain fatty alcohols.
    Lou H; Wu S; Li X; Lan T; Yang D; Pang Y; Qiu X; Li X; Huang J
    J Agric Food Chem; 2014 Aug; 62(33):8430-6. PubMed ID: 25111907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity.
    Lázaro GR; Hernández-Machado A; Pagonabarraga I
    Soft Matter; 2014 Oct; 10(37):7195-206. PubMed ID: 25105872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition performance of lignocellulose degradation products on industrial cellulase enzymes during cellulose hydrolysis.
    Jing X; Zhang X; Bao J
    Appl Biochem Biotechnol; 2009 Dec; 159(3):696-707. PubMed ID: 19184544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High consistency enzymatic hydrolysis of hardwood substrates.
    Zhang X; Qin W; Paice MG; Saddler JN
    Bioresour Technol; 2009 Dec; 100(23):5890-7. PubMed ID: 19643602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractionating recalcitrant lignocellulose at modest reaction conditions.
    Zhang YH; Ding SY; Mielenz JR; Cui JB; Elander RT; Laser M; Himmel ME; McMillan JR; Lynd LR
    Biotechnol Bioeng; 2007 Jun; 97(2):214-23. PubMed ID: 17318910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes--factors affecting enzymes, conversion and synergy.
    Van Dyk JS; Pletschke BI
    Biotechnol Adv; 2012; 30(6):1458-80. PubMed ID: 22445788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena.
    Nechyporchuk O; Belgacem MN; Pignon F
    Carbohydr Polym; 2014 Nov; 112():432-9. PubMed ID: 25129764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin containing cellulose nanofibers (LCNFs): Lignin content-morphology-rheology relationships.
    Yuan T; Zeng J; Wang B; Cheng Z; Chen K
    Carbohydr Polym; 2021 Feb; 254():117441. PubMed ID: 33357912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial utilization of lignin: available biotechnologies for its degradation and valorization.
    Palazzolo MA; Kurina-Sanz M
    World J Microbiol Biotechnol; 2016 Oct; 32(10):173. PubMed ID: 27565783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomass pretreatment strategies via control of rheological behavior of biomass suspensions and reactive twin screw extrusion processing.
    Senturk-Ozer S; Gevgilili H; Kalyon DM
    Bioresour Technol; 2011 Oct; 102(19):9068-75. PubMed ID: 21831631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review.
    Alvira P; Tomás-Pejó E; Ballesteros M; Negro MJ
    Bioresour Technol; 2010 Jul; 101(13):4851-61. PubMed ID: 20042329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.
    Cui Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031911. PubMed ID: 21517529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes.
    Andrić P; Meyer AS; Jensen PA; Dam-Johansen K
    Biotechnol Adv; 2010; 28(3):308-24. PubMed ID: 20080173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheo-SAXS investigation of shear-thinning behaviour of very anisometric repulsive disc-like clay suspensions.
    Philippe AM; Baravian C; Imperor-Clerc M; De Silva J; Paineau E; Bihannic I; Davidson P; Meneau F; Levitz P; Michot LJ
    J Phys Condens Matter; 2011 May; 23(19):194112. PubMed ID: 21525562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and biochemical generation of carbohydrates from lignocellulose-feedstock (Lupinus nootkatensis)--quantification of glucose.
    Kamm B; Kamm M; Schmidt M; Starke I; Kleinpeter E
    Chemosphere; 2006 Jan; 62(1):97-105. PubMed ID: 15893787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.