These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 25786942)

  • 1. Interaural envelope correlation change discrimination in bilateral cochlear implantees: effects of mismatch, centering, and onset of deafness.
    Goupell MJ
    J Acoust Soc Am; 2015 Mar; 137(3):1282-97. PubMed ID: 25786942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users.
    Kan A; Litovsky RY; Goupell MJ
    Ear Hear; 2015; 36(3):e62-8. PubMed ID: 25565660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binaural sensitivity in children who use bilateral cochlear implants.
    Ehlers E; Goupell MJ; Zheng Y; Godar SP; Litovsky RY
    J Acoust Soc Am; 2017 Jun; 141(6):4264. PubMed ID: 28618809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity to interaural level and envelope time differences of two bilateral cochlear implant listeners using clinical sound processors.
    Laback B; Pok SM; Baumgartner WD; Deutsch WA; Schmid K
    Ear Hear; 2004 Oct; 25(5):488-500. PubMed ID: 15599195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of intonation contours by adolescents with cochlear implants.
    Holt CM; McDermott HJ
    Int J Audiol; 2013 Dec; 52(12):808-15. PubMed ID: 24053225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating the effect of interaural mismatch in the insertion depth of bilateral cochlear implants on speech perception.
    van Besouw RM; Forrester L; Crowe ND; Rowan D
    J Acoust Soc Am; 2013 Aug; 134(2):1348-57. PubMed ID: 23927131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing sound localization deficits in bilateral cochlear-implant users and vocoder simulations with normal-hearing listeners.
    Jones H; Kan A; Litovsky RY
    Trends Hear; 2014 Nov; 18():. PubMed ID: 25385244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Psychoacoustic and phoneme identification measures in cochlear-implant and normal-hearing listeners.
    Goldsworthy RL; Delhorne LA; Braida LD; Reed CM
    Trends Amplif; 2013 Mar; 17(1):27-44. PubMed ID: 23429419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate discrimination at low pulse rates in normal-hearing and cochlear implant listeners: Influence of intracochlear stimulation site.
    Stahl P; Macherey O; Meunier S; Roman S
    J Acoust Soc Am; 2016 Apr; 139(4):1578. PubMed ID: 27106306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of mismatched place-of-stimulation on binaural fusion and lateralization in bilateral cochlear-implant users.
    Kan A; Stoelb C; Litovsky RY; Goupell MJ
    J Acoust Soc Am; 2013 Oct; 134(4):2923-36. PubMed ID: 24116428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fitting prelingually deafened adult cochlear implant users based on electrode discrimination performance.
    Debruyne JA; Francart T; Janssen AM; Douma K; Brokx JP
    Int J Audiol; 2017 Mar; 56(3):174-185. PubMed ID: 27758152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners.
    Churchill TH; Kan A; Goupell MJ; Litovsky RY
    J Acoust Soc Am; 2014 Sep; 136(3):1246. PubMed ID: 25190398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity to interaural envelope correlation changes in bilateral cochlear-implant users.
    Goupell MJ; Litovsky RY
    J Acoust Soc Am; 2015 Jan; 137(1):335-49. PubMed ID: 25618064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cochlear implant user with exceptional musical hearing ability.
    Maarefvand M; Marozeau J; Blamey PJ
    Int J Audiol; 2013 Jun; 52(6):424-32. PubMed ID: 23509878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating interaural frequency-place mismatches via bimodal vowel integration.
    Guérit F; Santurette S; Chalupper J; Dau T
    Trends Hear; 2014 Nov; 18():. PubMed ID: 25421087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Musical pitch and lexical tone perception with cochlear implants.
    Wang W; Zhou N; Xu L
    Int J Audiol; 2011 Apr; 50(4):270-8. PubMed ID: 21190394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric-acoustic pitch comparisons in single-sided-deaf cochlear implant users: frequency-place functions and rate pitch.
    Schatzer R; Vermeire K; Visser D; Krenmayr A; Kals M; Voormolen M; Van de Heyning P; Zierhofer C
    Hear Res; 2014 Mar; 309():26-35. PubMed ID: 24252455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perception of stochastic envelopes by normal-hearing and cochlear-implant listeners.
    Gomersall PA; Turner RE; Baguley DM; Deeks JM; Gockel HE; Carlyon RP
    Hear Res; 2016 Mar; 333():8-24. PubMed ID: 26706708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mismatch negativity (MMN) objectively reflects timbre discrimination thresholds in normal-hearing listeners and cochlear implant users.
    Rahne T; Plontke SK; Wagner L
    Brain Res; 2014 Oct; 1586():143-51. PubMed ID: 25152464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pitch matching in bimodal cochlear implant patients: Effects of frequency, spectral envelope, and level.
    Maarefvand M; Blamey PJ; Marozeau J
    J Acoust Soc Am; 2017 Nov; 142(5):2854. PubMed ID: 29195427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.