These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25787144)

  • 41. Subject level clustering using a negative binomial model for small transcriptomic studies.
    Li Q; Noel-MacDonnell JR; Koestler DC; Goode EL; Fridley BL
    BMC Bioinformatics; 2018 Dec; 19(1):474. PubMed ID: 30541426
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessing the adequacy of variance function in heteroscedastic regression models.
    Wang L; Zhou XH
    Biometrics; 2007 Dec; 63(4):1218-25. PubMed ID: 17484775
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Finite mixture modeling for vehicle crash data with application to hotspot identification.
    Park BJ; Lord D; Lee C
    Accid Anal Prev; 2014 Oct; 71():319-26. PubMed ID: 24992301
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Application of finite mixture of negative binomial regression models with varying weight parameters for vehicle crash data analysis.
    Zou Y; Zhang Y; Lord D
    Accid Anal Prev; 2013 Jan; 50():1042-51. PubMed ID: 23022076
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The negative binomial-Lindley distribution as a tool for analyzing crash data characterized by a large amount of zeros.
    Lord D; Geedipally SR
    Accid Anal Prev; 2011 Sep; 43(5):1738-42. PubMed ID: 21658501
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A multi-Poisson dynamic mixture model to cluster developmental patterns of gene expression by RNA-seq.
    Ye M; Wang Z; Wang Y; Wu R
    Brief Bioinform; 2015 Mar; 16(2):205-15. PubMed ID: 24817567
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An effective analytic method for detecting tissue-specific genes in RNA-seq experiments.
    Zhao G; Li Q; Wang IM; Liu X; Fang X; Zhang XD
    Pharmacogenomics; 2015 Nov; 16(16):1769-79. PubMed ID: 26554622
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A chi-square goodness-of-fit test for autoregressive logistic regression models with applications to patient screening.
    Hansen AM; Jeske D; Kirsch W
    J Biopharm Stat; 2015; 25(1):89-108. PubMed ID: 24854578
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of finite mixture models for vehicle crash data analysis.
    Park BJ; Lord D
    Accid Anal Prev; 2009 Jul; 41(4):683-91. PubMed ID: 19540956
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Statistical methods on detecting differentially expressed genes for RNA-seq data.
    Chen Z; Liu J; Ng HK; Nadarajah S; Kaufman HL; Yang JY; Deng Y
    BMC Syst Biol; 2011; 5 Suppl 3(Suppl 3):S1. PubMed ID: 22784615
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Technical and biological variance structure in mRNA-Seq data: life in the real world.
    Oberg AL; Bot BM; Grill DE; Poland GA; Therneau TM
    BMC Genomics; 2012 Jul; 13():304. PubMed ID: 22769017
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of hypoglycemic events using negative binomial models.
    Luo J; Qu Y
    Pharm Stat; 2013; 12(4):233-42. PubMed ID: 23776062
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Robustly detecting differential expression in RNA sequencing data using observation weights.
    Zhou X; Lindsay H; Robinson MD
    Nucleic Acids Res; 2014 Jun; 42(11):e91. PubMed ID: 24753412
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Multivariate Negative-Binomial Model with Random Effects for Differential Gene-Expression Analysis of Correlated mRNA Sequencing Data.
    Kazakiewicz D; Claesen J; Górczak K; Plewczynski D; Burzykowski T
    J Comput Biol; 2019 Dec; 26(12):1339-1348. PubMed ID: 31314581
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Accelerated rates regression models for recurrent failure time data.
    Ghosh D
    Lifetime Data Anal; 2004 Sep; 10(3):247-61. PubMed ID: 15456106
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A comparison of different ways of including baseline counts in negative binomial models for data from falls prevention trials.
    Zheng H; Kimber A; Goodwin VA; Pickering RM
    Biom J; 2018 Jan; 60(1):66-78. PubMed ID: 29067697
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparison of residual diagnosis tools for diagnosing regression models for count data.
    Feng C; Li L; Sadeghpour A
    BMC Med Res Methodol; 2020 Jul; 20(1):175. PubMed ID: 32611379
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bayesian Analysis of RNA-Seq Data Using a Family of Negative Binomial Models.
    Zhao L; Wu W; Feng D; Jiang H; Nguyen X
    Bayesian Anal; 2018 Jun; 13(2):411-436. PubMed ID: 33868546
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of graphical diagnostics for assessing goodness of fit of logistic regression models.
    Pavan Kumar VV; Duffull SB
    J Pharmacokinet Pharmacodyn; 2011 Apr; 38(2):205-22. PubMed ID: 21153868
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    Zhang Y; Parmigiani G; Johnson WE
    NAR Genom Bioinform; 2020 Sep; 2(3):lqaa078. PubMed ID: 33015620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.