These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 25787154)
1. Isolation of a spontaneous cerulenin-resistant sake yeast with both high ethyl caproate-producing ability and normal checkpoint integrity. Tamura H; Okada H; Kume K; Koyano T; Goshima T; Nakamura R; Akao T; Shimoi H; Mizunuma M; Ohya Y; Hirata D Biosci Biotechnol Biochem; 2015; 79(7):1191-9. PubMed ID: 25787154 [TBL] [Abstract][Full Text] [Related]
2. Identification of a mutation causing a defective spindle assembly checkpoint in high ethyl caproate-producing sake yeast strain K1801. Goshima T; Nakamura R; Kume K; Okada H; Ichikawa E; Tamura H; Hasuda H; Inahashi M; Okazaki N; Akao T; Shimoi H; Mizunuma M; Ohya Y; Hirata D Biosci Biotechnol Biochem; 2016 Aug; 80(8):1657-62. PubMed ID: 27191586 [TBL] [Abstract][Full Text] [Related]
3. The construction and application of diploid sake yeast with a homozygous mutation in the FAS2 gene. Kotaka A; Sahara H; Hata Y J Biosci Bioeng; 2010 Dec; 110(6):675-8. PubMed ID: 20708434 [TBL] [Abstract][Full Text] [Related]
4. Self-cloning yeast strains containing novel FAS2 mutations produce a higher amount of ethyl caproate in Japanese sake. Aritomi K; Hirosawa I; Hoshida H; Shiigi M; Nishizawa Y; Kashiwagi S; Akada R Biosci Biotechnol Biochem; 2004 Jan; 68(1):206-14. PubMed ID: 14745185 [TBL] [Abstract][Full Text] [Related]
5. Breeding of a sake yeast mutant with enhanced ethyl caproate productivity in sake brewing using rice milled at a high polishing ratio. Takahashi T; Ohara Y; Sueno K J Biosci Bioeng; 2017 Jun; 123(6):707-713. PubMed ID: 28286120 [TBL] [Abstract][Full Text] [Related]
6. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives. Kitagaki H; Kitamoto K Annu Rev Food Sci Technol; 2013; 4():215-35. PubMed ID: 23464572 [TBL] [Abstract][Full Text] [Related]
7. Improved ethyl caproate production of Chinese liquor yeast by overexpressing fatty acid synthesis genes with OPI1 deletion. Chen Y; Luo W; Gong R; Xue X; Guan X; Song L; Guo X; Xiao D J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1261-70. PubMed ID: 27344573 [TBL] [Abstract][Full Text] [Related]
8. Isolation of a non-urea-producing sake yeast strain carrying a discriminable molecular marker. Kuribayashi T; Tamura H; Sato K; Nabekura Y; Aoki T; Anzawa Y; Katsumata K; Ohdaira S; Yamashita S; Kume K; Kaneoke M; Watanabe K; Hirata D Biosci Biotechnol Biochem; 2013; 77(12):2505-9. PubMed ID: 24317072 [TBL] [Abstract][Full Text] [Related]
9. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. Cordente AG; Cordero-Bueso G; Pretorius IS; Curtin CD FEMS Yeast Res; 2013 Feb; 13(1):62-73. PubMed ID: 23146134 [TBL] [Abstract][Full Text] [Related]
11. Isolation of sake yeast strains from Ariake Sea tidal flats and evaluation of their brewing characteristics. Baba S; Sawada K; Orita R; Kimura K; Goto M; Kobayashi G J Gen Appl Microbiol; 2022 Jun; 68(1):30-37. PubMed ID: 35431296 [TBL] [Abstract][Full Text] [Related]
12. Cerulenin-resistant mutants of Saccharomyces cerevisiae with an altered fatty acid synthase gene. Inokoshi J; Tomoda H; Hashimoto H; Watanabe A; Takeshima H; Omura S Mol Gen Genet; 1994 Jul; 244(1):90-6. PubMed ID: 8041367 [TBL] [Abstract][Full Text] [Related]
13. Characteristic analysis of the fermentation and sporulation properties of the traditional sake yeast strain Hiroshima no.6. Yamasaki R; Goshima T; Oba K; Isogai A; Ohdoi R; Hirata D; Akao T Biosci Biotechnol Biochem; 2020 Apr; 84(4):842-853. PubMed ID: 31868109 [TBL] [Abstract][Full Text] [Related]
14. MAL73, a novel regulator of maltose fermentation, is functionally impaired by single nucleotide polymorphism in sake brewing yeast. Ohdate T; Omura F; Hatanaka H; Zhou Y; Takagi M; Goshima T; Akao T; Ono E PLoS One; 2018; 13(6):e0198744. PubMed ID: 29894505 [TBL] [Abstract][Full Text] [Related]
15. Effect of the FAA1 gene disruption of sake yeast on the accumulation of ethyl caproate in sake mash. Asano T; Kawadu M; Kurose N; Tarumi S; Kawakita S J Biosci Bioeng; 2000; 89(6):609-11. PubMed ID: 16232807 [TBL] [Abstract][Full Text] [Related]
17. Characteristic features of the unique house sake yeast strain Saccharomyces cerevisiae Km67 used for industrial sake brewing. Takao Y; Takahashi T; Yamada T; Goshima T; Isogai A; Sueno K; Fujii T; Akao T J Biosci Bioeng; 2018 Nov; 126(5):617-623. PubMed ID: 29884321 [TBL] [Abstract][Full Text] [Related]
18. Enhanced ethyl caproate production of Chinese liquor yeast by overexpressing EHT1 with deleted FAA1. Chen Y; Li F; Guo J; Liu G; Guo X; Xiao D J Ind Microbiol Biotechnol; 2014 Mar; 41(3):563-72. PubMed ID: 24370880 [TBL] [Abstract][Full Text] [Related]
19. Metabolic switching of sake yeast by kimoto lactic acid bacteria through theĀ [GAR Watanabe D; Kumano M; Sugimoto Y; Ito M; Ohashi M; Sunada K; Takahashi T; Yamada T; Takagi H J Biosci Bioeng; 2018 Nov; 126(5):624-629. PubMed ID: 29861316 [TBL] [Abstract][Full Text] [Related]
20. Analysis of free fatty acids in sake by an enzymatic method and its application for estimating ethyl caproate and selecting yeast with high productivity of the ester. Kuribayashi T; Kaneoke M; Hirata D; Watanabe K Biosci Biotechnol Biochem; 2012; 76(2):391-4. PubMed ID: 22313771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]