BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25787154)

  • 21. Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast.
    Watanabe D; Nogami S; Ohya Y; Kanno Y; Zhou Y; Akao T; Shimoi H
    J Biosci Bioeng; 2011 Dec; 112(6):577-82. PubMed ID: 21906996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Breeding sake yeast and identification of mutation patterns by synchrotron light irradiation.
    Baba S; Hamasaki T; Sawada K; Orita R; Nagano Y; Kimura K; Goto M; Kobayashi G
    J Biosci Bioeng; 2021 Sep; 132(3):265-270. PubMed ID: 34088597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast.
    Kadowaki M; Fujimaru Y; Taguchi S; Ferdouse J; Sawada K; Kimura Y; Terasawa Y; Agrimi G; Anai T; Noguchi H; Toyoda A; Fujiyama A; Akao T; Kitagaki H
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation of copper-tolerant mutants of sake yeast with defective peptide uptake.
    Yamada T; Furukawa K; Hara S; Mizoguchi H
    J Biosci Bioeng; 2005 Oct; 100(4):460-5. PubMed ID: 16310738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome Editing to Generate Sake Yeast Strains with Eight Mutations That Confer Excellent Brewing Characteristics.
    Chadani T; Ohnuki S; Isogai A; Goshima T; Kashima M; Ghanegolmohammadi F; Nishi T; Hirata D; Watanabe D; Kitamoto K; Akao T; Ohya Y
    Cells; 2021 May; 10(6):. PubMed ID: 34073778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tetrad analysis of sake yeast and identification of an RFLP marker for the absence of phenolic off-flavour production.
    Ogata T; Ayuzawa R; Yamada R
    J Gen Appl Microbiol; 2020 Aug; 66(3):175-180. PubMed ID: 31495807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genotypic analysis of the FAS2-F1279Y (3836T>A) polymorphism conferring high ethyl caprylate productivity in industrial sake yeast strains.
    Kuribayashi T; Sakurai T; Hatakeyama A; Joh T; Kaneoke M
    J Gen Appl Microbiol; 2023 Jan; 68(5):248-252. PubMed ID: 35676064
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of high folate accumulation in a sake yeast other than Kyokai yeasts.
    Shibata Y; Yamada T; Morimoto T; Fujii T; Akao T; Goshima T; Takahashi T; Tanaka N
    J Biosci Bioeng; 2020 Jan; 129(1):1-5. PubMed ID: 31515157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.
    Wu H; Watanabe T; Araki Y; Kitagaki H; Akao T; Takagi H; Shimoi H
    J Biosci Bioeng; 2009 Jun; 107(6):636-40. PubMed ID: 19447341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The bio3 mutation in sake yeast leads to changes in organic acid profiles and ester levels but not ethanol production.
    Takase S; Tomonaga K; Tanaka J; Moriya C; Kiyoshi K; Akao T; Watanabe K; Kadokura T; Nakayama S
    J Biosci Bioeng; 2023 Jul; 136(1):44-50. PubMed ID: 37183145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emergence of [GAR
    Tanabe K; Maeda N; Okumura H; Shima J
    Yeast; 2023 Mar; 40(3-4):134-142. PubMed ID: 36755487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutagenesis, breeding, and characterization of sake yeast strains with low production of dimethyl trisulfide precursor.
    Makimoto J; Wakabayashi K; Inoue T; Ikeda Y; Kanda R; Isogai A; Fujii T; Nakae T
    J Biosci Bioeng; 2020 Dec; 130(6):610-615. PubMed ID: 32800812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing.
    Izawa S; Ikeda K; Miki T; Wakai Y; Inoue Y
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):277-82. PubMed ID: 20625715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of sake yeast haploid set with diverse brewing properties using sake yeast strain Hiroshima no. 6 exhibiting sexual reproduction.
    Yamasaki R; Goshima T; Oba K; Kanai M; Ohdoi R; Hirata D; Akao T
    J Biosci Bioeng; 2020 Jun; 129(6):706-714. PubMed ID: 32085973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polyploid engineering by increasing mutant gene dosage in yeasts.
    Fukuda N; Honda S; Fujiwara M; Yoshimura Y; Nakamura T
    Microb Biotechnol; 2021 May; 14(3):979-992. PubMed ID: 33350592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation.
    Urbanczyk H; Noguchi C; Wu H; Watanabe D; Akao T; Takagi H; Shimoi H
    J Biosci Bioeng; 2011 Jul; 112(1):44-8. PubMed ID: 21459038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and isolation of mutants producing increased amounts of isoamyl acetate derived from hygromycin B-resistant sake yeast.
    Inoue T; Iefuji H; Katsumata H
    Biosci Biotechnol Biochem; 2012; 76(1):60-6. PubMed ID: 22232249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of sake yeast mutants with enhanced isoamyl acetate productivity.
    Takahashi T; Ohara Y; Sawatari M; Sueno K
    J Biosci Bioeng; 2017 Jan; 123(1):71-77. PubMed ID: 27475923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamical analysis of yeast protein interaction network during the sake brewing process.
    Mirzarezaee M; Sadeghi M; Araabi BN
    J Microbiol; 2011 Dec; 49(6):965-73. PubMed ID: 22203560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Properties of a high malic acid-producing strains of Saccharomyces cerevisiae isolated from sake mash.
    Oba T; Suenaga H; Nakayama S; Mitsuiki S; Kitagaki H; Tashiro K; Kuhara S
    Biosci Biotechnol Biochem; 2011; 75(10):2025-9. PubMed ID: 21979083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.