BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

669 related articles for article (PubMed ID: 25787823)

  • 21. Transduction of proteins into leishmania tarentolae by formation of non-covalent complexes with cell-penetrating peptides.
    Keller AA; Breitling R; Hemmerich P; Kappe K; Braun M; Wittig B; Schaefer B; Lorkowski S; Reissmann S
    J Cell Biochem; 2014 Feb; 115(2):243-52. PubMed ID: 24038170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo biodistribution and efficacy of peptide mediated delivery.
    Järver P; Mäger I; Langel Ü
    Trends Pharmacol Sci; 2010 Nov; 31(11):528-35. PubMed ID: 20828841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides.
    Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID
    Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classes and prediction of cell-penetrating peptides.
    Lindgren M; Langel U
    Methods Mol Biol; 2011; 683():3-19. PubMed ID: 21053118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells.
    Ma DX; Shi NQ; Qi XR
    Int J Pharm; 2011 Oct; 419(1-2):200-8. PubMed ID: 21843610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Penetratin story: an overview.
    Dupont E; Prochiantz A; Joliot A
    Methods Mol Biol; 2011; 683():21-9. PubMed ID: 21053119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell-penetrating peptides as a promising tool for delivery of various molecules into the cells.
    Ruczynski J; Wierzbicki PM; Kogut-Wierzbicka M; Mucha P; Siedlecka-Kroplewska K; Rekowski P
    Folia Histochem Cytobiol; 2014; 52(4):257-69. PubMed ID: 25530464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery.
    Wang F; Wang Y; Zhang X; Zhang W; Guo S; Jin F
    J Control Release; 2014 Jan; 174():126-36. PubMed ID: 24291335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracellular translocation and differential accumulation of cell-penetrating peptides in bovine spermatozoa: evaluation of efficient delivery vectors that do not compromise human sperm motility.
    Jones S; Lukanowska M; Suhorutsenko J; Oxenham S; Barratt C; Publicover S; Copolovici DM; Langel Ü; Howl J
    Hum Reprod; 2013 Jul; 28(7):1874-89. PubMed ID: 23585561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Therapeutic applications of cell-penetrating peptides.
    Johnson RM; Harrison SD; Maclean D
    Methods Mol Biol; 2011; 683():535-51. PubMed ID: 21053155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore.
    Trofimenko E; Grasso G; Heulot M; Chevalier N; Deriu MA; Dubuis G; Arribat Y; Serulla M; Michel S; Vantomme G; Ory F; Dam LC; Puyal J; Amati F; Lüthi A; Danani A; Widmann C
    Elife; 2021 Oct; 10():. PubMed ID: 34713805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell-penetrating peptides: breaking through to the other side.
    Koren E; Torchilin VP
    Trends Mol Med; 2012 Jul; 18(7):385-93. PubMed ID: 22682515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of the attachment of a penetration accelerating sequence and the influence of hydrophobicity on octaarginine-mediated intracellular delivery.
    Takayama K; Hirose H; Tanaka G; Pujals S; Katayama S; Nakase I; Futaki S
    Mol Pharm; 2012 May; 9(5):1222-30. PubMed ID: 22486588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acylation of octaarginine: Implication to the use of intracellular delivery vectors.
    Katayama S; Hirose H; Takayama K; Nakase I; Futaki S
    J Control Release; 2011 Jan; 149(1):29-35. PubMed ID: 20144669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein delivery carrier.
    Young Kim H; Young Yum S; Jang G; Ahn DR
    Sci Rep; 2015 Jun; 5():11719. PubMed ID: 26114640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Translocation mechanism(s) of cell-penetrating peptides: biophysical studies using artificial membrane bilayers.
    Di Pisa M; Chassaing G; Swiecicki JM
    Biochemistry; 2015 Jan; 54(2):194-207. PubMed ID: 25490050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intracellular delivery of nanoparticles with CPPs.
    Sawant R; Torchilin V
    Methods Mol Biol; 2011; 683():431-51. PubMed ID: 21053148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR studies of three-dimensional structure and positioning of CPPs in membrane model systems.
    Mäler L; Gräslund A
    Methods Mol Biol; 2011; 683():57-67. PubMed ID: 21053122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of Hydrophobic Cell-Penetrating Stapled Peptides as Drug Carriers.
    Tsuchiya K; Horikoshi K; Fujita M; Hirano M; Miyamoto M; Yokoo H; Demizu Y
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of PepFect peptides for the delivery of splice-correcting oligonucleotides.
    Andaloussi SE; Lehto T; Lundin P; Langel U
    Methods Mol Biol; 2011; 683():361-73. PubMed ID: 21053143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.