These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 25787931)

  • 1. High frequency functional brain networks in neonates revealed by rapid acquisition resting state fMRI.
    Smith-Collins AP; Luyt K; Heep A; Kauppinen RA
    Hum Brain Mapp; 2015 Jul; 36(7):2483-94. PubMed ID: 25787931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
    Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ
    Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity.
    Bächinger M; Zerbi V; Moisa M; Polania R; Liu Q; Mantini D; Ruff C; Wenderoth N
    J Neurosci; 2017 May; 37(18):4766-4777. PubMed ID: 28385876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging.
    Catalino MP; Yao S; Green DL; Laws ER; Golby AJ; Tie Y
    Neurosurg Focus; 2020 Feb; 48(2):E9. PubMed ID: 32006946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advantages of short repetition time resting-state functional MRI enabled by simultaneous multi-slice imaging.
    Jahanian H; Holdsworth S; Christen T; Wu H; Zhu K; Kerr AB; Middione MJ; Dougherty RF; Moseley M; Zaharchuk G
    J Neurosci Methods; 2019 Jan; 311():122-132. PubMed ID: 30300699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time of acquisition and network stability in pediatric resting-state functional magnetic resonance imaging.
    White T; Muetzel R; Schmidt M; Langeslag SJ; Jaddoe V; Hofman A; Calhoun VD; Verhulst FC; Tiemeier H
    Brain Connect; 2014 Aug; 4(6):417-27. PubMed ID: 24874884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resting state network connectivity is attenuated by fMRI acoustic noise.
    Pellegrino G; Schuler AL; Arcara G; Di Pino G; Piccione F; Kobayashi E
    Neuroimage; 2022 Feb; 247():118791. PubMed ID: 34920084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroaging through the Lens of the Resting State Networks.
    Cieri F; Esposito R
    Biomed Res Int; 2018; 2018():5080981. PubMed ID: 29568755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in resting state fMRI acquisitions for functional connectomics.
    Raimondo L; Oliveira ĹAF; Heij J; Priovoulos N; Kundu P; Leoni RF; van der Zwaag W
    Neuroimage; 2021 Nov; 243():118503. PubMed ID: 34479041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-varying spectral power of resting-state fMRI networks reveal cross-frequency dependence in dynamic connectivity.
    Yaesoubi M; Miller RL; Calhoun VD
    PLoS One; 2017; 12(2):e0171647. PubMed ID: 28192457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractal analysis of spontaneous fluctuations of the BOLD signal in the human brain networks.
    Li YC; Huang YA
    J Magn Reson Imaging; 2014 May; 39(5):1118-25. PubMed ID: 24027126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global and structured waves of rs-fMRI signal identified as putative propagation of spontaneous neural activity.
    Amemiya S; Takao H; Hanaoka S; Ohtomo K
    Neuroimage; 2016 Jun; 133():331-340. PubMed ID: 27012499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional integration between brain regions at rest occurs in multiple-frequency bands.
    Gohel SR; Biswal BB
    Brain Connect; 2015 Feb; 5(1):23-34. PubMed ID: 24702246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
    Chu PPW; Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Neuroimage; 2018 Jun; 173():72-87. PubMed ID: 29452265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiband fMRI as a plausible, time-saving technique for resting-state data acquisition: Study on functional connectivity mapping using graph theoretical measures.
    Smitha KA; Arun KM; Rajesh PG; Joel SE; Venkatesan R; Thomas B; Kesavadas C
    Magn Reson Imaging; 2018 Nov; 53():1-6. PubMed ID: 29928936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluctuations of the EEG-fMRI correlation reflect intrinsic strength of functional connectivity in default mode network.
    Keinänen T; Rytky S; Korhonen V; Huotari N; Nikkinen J; Tervonen O; Palva JM; Kiviniemi V
    J Neurosci Res; 2018 Oct; 96(10):1689-1698. PubMed ID: 29761531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resting-state fMRI can reliably map neural networks in children.
    Thomason ME; Dennis EL; Joshi AA; Joshi SH; Dinov ID; Chang C; Henry ML; Johnson RF; Thompson PM; Toga AW; Glover GH; Van Horn JD; Gotlib IH
    Neuroimage; 2011 Mar; 55(1):165-75. PubMed ID: 21134471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early development of spatial patterns of power-law frequency scaling in FMRI resting-state and EEG data in the newborn brain.
    Fransson P; Metsäranta M; Blennow M; Åden U; Lagercrantz H; Vanhatalo S
    Cereb Cortex; 2013 Mar; 23(3):638-46. PubMed ID: 22402348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Multiband EPI Acquisitions for Resting State fMRI.
    Preibisch C; Castrillón G JG; Bührer M; Riedl V
    PLoS One; 2015; 10(9):e0136961. PubMed ID: 26375666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.