BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25788286)

  • 1. Drosophila Cappuccino alleles provide insight into formin mechanism and role in oogenesis.
    Yoo H; Roth-Johnson EA; Bor B; Quinlan ME
    Mol Biol Cell; 2015 May; 26(10):1875-86. PubMed ID: 25788286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the formin Cappuccino is critical for polarity of Drosophila oocytes.
    Bor B; Bois JS; Quinlan ME
    Cytoskeleton (Hoboken); 2015 Jan; 72(1):1-15. PubMed ID: 25557988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between microtubules and the Drosophila formin Cappuccino and its effect on actin assembly.
    Roth-Johnson EA; Vizcarra CL; Bois JS; Quinlan ME
    J Biol Chem; 2014 Feb; 289(7):4395-404. PubMed ID: 24362037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spire stimulates nucleation by Cappuccino and binds both ends of actin filaments.
    Bradley AO; Vizcarra CL; Bailey HM; Quinlan ME
    Mol Biol Cell; 2020 Feb; 31(4):273-286. PubMed ID: 31877067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of formin tails in actin nucleation, processive elongation, and filament bundling.
    Vizcarra CL; Bor B; Quinlan ME
    J Biol Chem; 2014 Oct; 289(44):30602-30613. PubMed ID: 25246531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct interaction between two actin nucleators is required in Drosophila oogenesis.
    Quinlan ME
    Development; 2013 Nov; 140(21):4417-25. PubMed ID: 24089467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory interactions between two actin nucleators, Spire and Cappuccino.
    Quinlan ME; Hilgert S; Bedrossian A; Mullins RD; Kerkhoff E
    J Cell Biol; 2007 Oct; 179(1):117-28. PubMed ID: 17923532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino.
    Rosales-Nieves AE; Johndrow JE; Keller LC; Magie CR; Pinto-Santini DM; Parkhurst SM
    Nat Cell Biol; 2006 Apr; 8(4):367-76. PubMed ID: 16518391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function of the interacting domains of Spire and Fmn-family formins.
    Vizcarra CL; Kreutz B; Rodal AA; Toms AV; Lu J; Zheng W; Quinlan ME; Eck MJ
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11884-9. PubMed ID: 21730168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drosophila Spire is an actin nucleation factor.
    Quinlan ME; Heuser JE; Kerkhoff E; Mullins RD
    Nature; 2005 Jan; 433(7024):382-8. PubMed ID: 15674283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte.
    Dahlgaard K; Raposo AA; Niccoli T; St Johnston D
    Dev Cell; 2007 Oct; 13(4):539-53. PubMed ID: 17925229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The activities of the C-terminal regions of the formin protein disheveled-associated activator of morphogenesis (DAAM) in actin dynamics.
    Vig AT; Földi I; Szikora S; Migh E; Gombos R; Tóth MÁ; Huber T; Pintér R; Talián GC; Mihály J; Bugyi B
    J Biol Chem; 2017 Aug; 292(33):13566-13583. PubMed ID: 28642367
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Patel AA; Oztug Durer ZA; van Loon AP; Bremer KV; Quinlan ME
    J Biol Chem; 2018 Jan; 293(2):532-540. PubMed ID: 29127202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autoinhibition of the formin Cappuccino in the absence of canonical autoinhibitory domains.
    Bor B; Vizcarra CL; Phillips ML; Quinlan ME
    Mol Biol Cell; 2012 Oct; 23(19):3801-13. PubMed ID: 22875983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the FH1 domain and profilin in formin-mediated actin-filament elongation and nucleation.
    Paul AS; Pollard TD
    Curr Biol; 2008 Jan; 18(1):9-19. PubMed ID: 18160294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The KASH domain protein MSP-300 plays an essential role in nuclear anchoring during Drosophila oogenesis.
    Yu J; Starr DA; Wu X; Parkhurst SM; Zhuang Y; Xu T; Xu R; Han M
    Dev Biol; 2006 Jan; 289(2):336-45. PubMed ID: 16337624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dmoesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis.
    Polesello C; Delon I; Valenti P; Ferrer P; Payre F
    Nat Cell Biol; 2002 Oct; 4(10):782-9. PubMed ID: 12360288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.
    Spracklen AJ; Fagan TN; Lovander KE; Tootle TL
    Dev Biol; 2014 Sep; 393(2):209-226. PubMed ID: 24995797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formin tails act as a switch, inhibiting or enhancing processive actin elongation.
    Bremer KV; Wu C; Patel AA; He KL; Grunfeld AM; Chanfreau GF; Quinlan ME
    J Biol Chem; 2024 Jan; 300(1):105557. PubMed ID: 38097186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ForC lacks canonical formin activity but bundles actin filaments and is required for multicellular development of Dictyostelium cells.
    Junemann A; Winterhoff M; Nordholz B; Rottner K; Eichinger L; Gräf R; Faix J
    Eur J Cell Biol; 2013; 92(6-7):201-12. PubMed ID: 23906540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.