These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25788325)

  • 1. Evaluation of a two-stage framework for prediction using big genomic data.
    Jiang X; Neapolitan RE
    Brief Bioinform; 2015 Nov; 16(6):912-21. PubMed ID: 25788325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative analysis of methods for predicting clinical outcomes using high-dimensional genomic datasets.
    Jiang X; Cai B; Xue D; Lu X; Cooper GF; Neapolitan RE
    J Am Med Inform Assoc; 2014 Oct; 21(e2):e312-9. PubMed ID: 24737607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Predictive Interactions Using Information Gain and Bayesian Network Scoring.
    Jiang X; Jao J; Neapolitan R
    PLoS One; 2015; 10(12):e0143247. PubMed ID: 26624895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utility of multi-omics data to inform genomic prediction of heifer fertility traits.
    Tahir MS; Porto-Neto LR; Reverter-Gomez T; Olasege BS; Sajid MR; Wockner KB; Tan AWL; Fortes MRS
    J Anim Sci; 2022 Dec; 100(12):. PubMed ID: 36239447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide prediction using Bayesian additive regression trees.
    Waldmann P
    Genet Sel Evol; 2016 Jun; 48(1):42. PubMed ID: 27286957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of a time-to-event trait using genome wide SNP data.
    Kim J; Sohn I; Son DS; Kim DH; Ahn T; Jung SH
    BMC Bioinformatics; 2013 Feb; 14():58. PubMed ID: 23418752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus.
    Müller BSF; Neves LG; de Almeida Filho JE; Resende MFR; Muñoz PR; Dos Santos PET; Filho EP; Kirst M; Grattapaglia D
    BMC Genomics; 2017 Jul; 18(1):524. PubMed ID: 28693539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning genetic epistasis using Bayesian network scoring criteria.
    Jiang X; Neapolitan RE; Barmada MM; Visweswaran S
    BMC Bioinformatics; 2011 Mar; 12():89. PubMed ID: 21453508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-genome sequence-based genomic prediction in laying chickens with different genomic relationship matrices to account for genetic architecture.
    Ni G; Cavero D; Fangmann A; Erbe M; Simianer H
    Genet Sel Evol; 2017 Jan; 49(1):8. PubMed ID: 28093063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic prediction based on selected variants from imputed whole-genome sequence data in Australian sheep populations.
    Moghaddar N; Khansefid M; van der Werf JHJ; Bolormaa S; Duijvesteijn N; Clark SA; Swan AA; Daetwyler HD; MacLeod IM
    Genet Sel Evol; 2019 Dec; 51(1):72. PubMed ID: 31805849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Psoriasis prediction from genome-wide SNP profiles.
    Fang S; Fang X; Xiong M
    BMC Dermatol; 2011 Jan; 11():1. PubMed ID: 21214922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximate Bayesian neural networks in genomic prediction.
    Waldmann P
    Genet Sel Evol; 2018 Dec; 50(1):70. PubMed ID: 30577737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LEAP: biomarker inference through learning and evaluating association patterns.
    Jiang X; Neapolitan RE
    Genet Epidemiol; 2015 Mar; 39(3):173-84. PubMed ID: 25677188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic selection and complex trait prediction using a fast EM algorithm applied to genome-wide markers.
    Shepherd RK; Meuwissen TH; Woolliams JA
    BMC Bioinformatics; 2010 Oct; 11():529. PubMed ID: 20969788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex-Trait Prediction in the Era of Big Data.
    de Los Campos G; Vazquez AI; Hsu S; Lello L
    Trends Genet; 2018 Oct; 34(10):746-754. PubMed ID: 30139641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Relative Power of Structural Genomic Variation versus SNPs in Explaining the Quantitative Trait Growth in the Marine Teleost
    Ruigrok M; Xue B; Catanach A; Zhang M; Jesson L; Davy M; Wellenreuther M
    Genes (Basel); 2022 Jun; 13(7):. PubMed ID: 35885912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High dimensional model representation of log likelihood ratio: binary classification with SNP data.
    Pour AF; Pietrzak M; Sucheston-Campbell LE; Karaesmen E; Dalton LA; Rempała GA
    BMC Med Genomics; 2020 Sep; 13(Suppl 9):133. PubMed ID: 32957998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse prediction informed by genetic annotations using the logit normal prior for Bayesian regression tree ensembles.
    Spanbauer C; Pan W;
    Genet Epidemiol; 2023 Feb; 47(1):26-44. PubMed ID: 36349692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.