BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

723 related articles for article (PubMed ID: 25788333)

  • 1. Effects of temperature changes and stress loading on the mechanical and shape memory properties of thermoplastic materials with different glass transition behaviours and crystal structures.
    Iijima M; Kohda N; Kawaguchi K; Muguruma T; Ohta M; Naganishi A; Murakami T; Mizoguchi I
    Eur J Orthod; 2015 Dec; 37(6):665-70. PubMed ID: 25788333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances.
    Kohda N; Iijima M; Muguruma T; Brantley WA; Ahluwalia KS; Mizoguchi I
    Angle Orthod; 2013 May; 83(3):476-83. PubMed ID: 23035832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and mechanical characteristics of contemporary thermoplastic orthodontic materials.
    Alexandropoulos A; Al Jabbari YS; Zinelis S; Eliades T
    Aust Orthod J; 2015 Nov; 31(2):165-70. PubMed ID: 26999889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content.
    Meng Q; Hu J; Zhu Y
    J Biomater Sci Polym Ed; 2008; 19(11):1437-54. PubMed ID: 18973722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermo-Mechanical Properties of Glass Fiber Reinforced Shape Memory Polyurethane for Orthodontic Application.
    Liu YF; Wu JL; Song SL; Xu LX; Chen J; Peng W
    J Mater Sci Mater Med; 2018 Aug; 29(9):148. PubMed ID: 30171364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature triggered shape memory effect of transpolyisoprene-based polymer.
    Tsukada G; Tokuda M; Torii M
    J Endod; 2014 Oct; 40(10):1658-62. PubMed ID: 25260740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress relaxation properties of four orthodontic aligner materials: A 24-hour in vitro study.
    Lombardo L; Martines E; Mazzanti V; Arreghini A; Mollica F; Siciliani G
    Angle Orthod; 2017 Jan; 87(1):11-18. PubMed ID: 27314603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chitosan fiber addition on the properties of polyurethane with thermo-responsive shape memory.
    Kawaguchi K; Iijima M; Miyakawa H; Ohta M; Muguruma T; Endo K; Nakazawa F; Mizoguchi I
    J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):1151-1156. PubMed ID: 27029842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexural properties and shock-absorbing capabilities of new face guard materials reinforced with fiberglass cloth.
    Abe K; Takahashi H; Churei H; Iwasaki N; Ueno T
    Dent Traumatol; 2013 Feb; 29(1):23-8. PubMed ID: 22458360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bending shape memory behaviours of carbon fibre reinforced polyurethane-type shape memory polymer composites under relatively small deformation: Characterisation and computational simulation.
    Cheng X; Chen Y; Dai S; Bilek MMM; Bao S; Ye L
    J Mech Behav Biomed Mater; 2019 Dec; 100():103372. PubMed ID: 31369958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Characterization of Thermoplastic Aligner Materials: Recommendations for Test Parameter Standardization.
    Elkholy F; Schmidt S; Amirkhani M; Schmidt F; Lapatki BG
    J Healthc Eng; 2019; 2019():8074827. PubMed ID: 31275537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of curing protocol on selected properties of light-curing polymers: degree of conversion, volume contraction, elastic modulus, and glass transition temperature.
    Dewaele M; Asmussen E; Peutzfeldt A; Munksgaard EC; Benetti AR; Finné G; Leloup G; Devaux J
    Dent Mater; 2009 Dec; 25(12):1576-84. PubMed ID: 19747719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applications.
    Staszczak M; Urbański L; Cristea M; Ionita D; Pieczyska EA
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructural evolution and physical behavior of a lithium disilicate glass-ceramic.
    Lien W; Roberts HW; Platt JA; Vandewalle KS; Hill TJ; Chu TM
    Dent Mater; 2015 Aug; 31(8):928-40. PubMed ID: 26076831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic mechanical and thermal properties of clear aligners after thermoforming and aging.
    Dalaie K; Fatemi SM; Ghaffari S
    Prog Orthod; 2021 Jun; 22(1):15. PubMed ID: 34180030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of constant strain on the elasticity of thermoplastic orthodontic materials.
    Inoue S; Yamaguchi S; Uyama H; Yamashiro T; Imazato S
    Dent Mater J; 2020 Jun; 39(3):415-421. PubMed ID: 31827059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wear comparison of thermoplastic materials used for orthodontic retainers.
    Gardner GD; Dunn WJ; Taloumis L
    Am J Orthod Dentofacial Orthop; 2003 Sep; 124(3):294-7. PubMed ID: 12970663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical evaluation of fiber-reinforced-plastic bonded orthodontic retainers.
    Ardeshna AP
    Am J Orthod Dentofacial Orthop; 2011 Jun; 139(6):761-7. PubMed ID: 21640882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The essential work of fracture of thermoplastic orthodontic retainer materials.
    Pascual AL; Beeman CS; Hicks EP; Bush HM; Mitchell RJ
    Angle Orthod; 2010 May; 80(3):554-61. PubMed ID: 20050752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEG-POSS Star Molecules Blended in Polyurethane with Flexible Hard Segments: Morphology and Dynamics.
    Raftopoulos KN; Hebda E; Grzybowska A; Klonos PA; Kyritsis A; Pielichowski K
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33379358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.