These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
549 related articles for article (PubMed ID: 25788450)
1. Genomic Analyses Reveal Potential Independent Adaptation to High Altitude in Tibetan Chickens. Wang MS; Li Y; Peng MS; Zhong L; Wang ZJ; Li QY; Tu XL; Dong Y; Zhu CL; Wang L; Yang MM; Wu SF; Miao YW; Liu JP; Irwin DM; Wang W; Wu DD; Zhang YP Mol Biol Evol; 2015 Jul; 32(7):1880-9. PubMed ID: 25788450 [TBL] [Abstract][Full Text] [Related]
2. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments. Zhang Q; Gou W; Wang X; Zhang Y; Ma J; Zhang H; Zhang Y; Zhang H Genome Biol Evol; 2016 Feb; 8(3):765-76. PubMed ID: 26907498 [TBL] [Abstract][Full Text] [Related]
3. Study on Tibetan Chicken embryonic adaptability to chronic hypoxia by revealing differential gene expression in heart tissue. Li M; Zhao C Sci China C Life Sci; 2009 Mar; 52(3):284-95. PubMed ID: 19294354 [TBL] [Abstract][Full Text] [Related]
4. Whole genome bisulfite sequencing reveals unique adaptations to high-altitude environments in Tibetan chickens. Zhang Z; Du H; Bai L; Yang C; Li Q; Li X; Qiu M; Yu C; Jiang Z; Jiang X; Liu L; Hu C; Xia B; Xiong X; Song X; Jiang X PLoS One; 2018; 13(3):e0193597. PubMed ID: 29561872 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide run of homozygosity analysis reveals candidate genomic regions associated with environmental adaptations of Tibetan native chickens. Yuan J; Li S; Sheng Z; Zhang M; Liu X; Yuan Z; Yang N; Chen J BMC Genomics; 2022 Jan; 23(1):91. PubMed ID: 35100979 [TBL] [Abstract][Full Text] [Related]
6. Population genomics identifies patterns of genetic diversity and selection in chicken. Li D; Li Y; Li M; Che T; Tian S; Chen B; Zhou X; Zhang G; Gaur U; Luo M; Tian K; He M; He S; Xu Z; Jin L; Tang Q; Dai Y; Xu H; Hu Y; Zhao X; Yin H; Wang Y; Zhou R; Yang C; Du H; Jiang X; Zhu Q; Li M BMC Genomics; 2019 Apr; 20(1):263. PubMed ID: 30940068 [TBL] [Abstract][Full Text] [Related]
7. A non-synonymous SNP with the allele frequency correlated with the altitude may contribute to the hypoxia adaptation of Tibetan chicken. Li S; Li D; Zhao X; Wang Y; Yin H; Zhou L; Zhong C; Zhu Q PLoS One; 2017; 12(2):e0172211. PubMed ID: 28222154 [TBL] [Abstract][Full Text] [Related]
8. High-altitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective. Zhao X; Wu N; Zhu Q; Gaur U; Gu T; Li D Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Sep; 27(5):3280-8. PubMed ID: 25693693 [TBL] [Abstract][Full Text] [Related]
9. Genetic structure and characteristics of Tibetan chickens. Li S; Zhang X; Dong X; Guo R; Nan J; Yuan J; Schlebusch CM; Sheng Z Poult Sci; 2023 Aug; 102(8):102767. PubMed ID: 37321029 [TBL] [Abstract][Full Text] [Related]
10. Key miRNAs and Genes in the High-Altitude Adaptation of Tibetan Chickens. Chen B; Li D; Ran B; Zhang P; Wang T Front Vet Sci; 2022; 9():911685. PubMed ID: 35909692 [TBL] [Abstract][Full Text] [Related]
11. The specific expression pattern of globin mRNAs in Tibetan chicken during late embryonic stage under hypoxia. Liu C; Zhang LF; Li N Comp Biochem Physiol A Mol Integr Physiol; 2013 Apr; 164(4):638-44. PubMed ID: 23000881 [TBL] [Abstract][Full Text] [Related]
12. Genomic Analysis Reveals Hypoxia Adaptation in the Tibetan Mastiff by Introgression of the Gray Wolf from the Tibetan Plateau. Miao B; Wang Z; Li Y Mol Biol Evol; 2017 Mar; 34(3):734-743. PubMed ID: 27927792 [TBL] [Abstract][Full Text] [Related]
13. Whole genome re-sequencing identifies unique adaption of single nucleotide polymorphism, insertion/deletion and structure variation related to hypoxia in Tibetan chickens. Zhang Z; Qiu M; Du H; Li Q; Yu C; Gan W; Peng H; Xia B; Xiong X; Song X; Yang L; Hu C; Chen J; Yang C; Jiang X Gene Expr Patterns; 2021 Jun; 40():119181. PubMed ID: 34004346 [TBL] [Abstract][Full Text] [Related]
14. Population variation revealed high-altitude adaptation of Tibetan mastiffs. Li Y; Wu DD; Boyko AR; Wang GD; Wu SF; Irwin DM; Zhang YP Mol Biol Evol; 2014 May; 31(5):1200-5. PubMed ID: 24520091 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the Selection Signal of the Tibetan Black Chicken Genome Based on Whole-Genome Sequencing. Feng J; Zhu W; Shi H; Peng D; Zang L; Wang Y; ZhaXi L; BaiMa J; Amevor FK; Wang X; Ma X; Zhao X Genes (Basel); 2023 Aug; 14(9):. PubMed ID: 37761812 [TBL] [Abstract][Full Text] [Related]
16. Population history and genomic signatures for high-altitude adaptation in Tibetan pigs. Ai H; Yang B; Li J; Xie X; Chen H; Ren J BMC Genomics; 2014 Oct; 15(1):834. PubMed ID: 25270331 [TBL] [Abstract][Full Text] [Related]
17. Identification of key HIF-1α target genes that regulate adaptation to hypoxic conditions in Tibetan chicken embryos. Zhang Y; Zhang H; Zhang B; Ling Y; Zhang H Gene; 2020 Mar; 729():144321. PubMed ID: 31887331 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide association analysis reveals novel loci for hypoxia adaptability in Tibetan chicken. Jiang SY; Xu HY; Shen ZN; Zhao CJ; Wu C Anim Genet; 2018 Aug; 49(4):337-339. PubMed ID: 29774577 [TBL] [Abstract][Full Text] [Related]
19. Evidence for Adaptation to the Tibetan Plateau Inferred from Tibetan Loach Transcriptomes. Wang Y; Yang L; Zhou K; Zhang Y; Song Z; He S Genome Biol Evol; 2015 Oct; 7(11):2970-82. PubMed ID: 26454018 [TBL] [Abstract][Full Text] [Related]
20. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Qu Y; Zhao H; Han N; Zhou G; Song G; Gao B; Tian S; Zhang J; Zhang R; Meng X; Zhang Y; Zhang Y; Zhu X; Wang W; Lambert D; Ericson PG; Subramanian S; Yeung C; Zhu H; Jiang Z; Li R; Lei F Nat Commun; 2013; 4():2071. PubMed ID: 23817352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]