BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2578853)

  • 1. Reversal of the static component of spindle potential by imposed depolarizing current in the frog muscle spindle.
    Ito F; Fujitsuka N; Fan XL
    Brain Res; 1985 Feb; 326(1):107-16. PubMed ID: 2578853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GK(Ca)-dependent cyclic potential changes in the sensory nerve terminal of frog muscle spindle.
    Ito F; Komatsu Y; Fujitsuka N
    Brain Res; 1982 Dec; 252(1):39-50. PubMed ID: 6293658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spindle potential in the frog muscle spindle does not require external Na+.
    Ito F; Fujitsuka N; Kim N
    Brain Res; 1983 Oct; 277(2):352-4. PubMed ID: 6315147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of the variability of the afferent discharge rate in frog muscle spindle by potassium blockers.
    Ito F; Komatsu Y; Kaneko N; Katsuta N
    Brain Res; 1981 Jul; 216(1):199-202. PubMed ID: 6266586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of calcium blockers on the discharge pattern of frog muscle spindle.
    Ito F; Komatsu Y; Katsuta N
    Brain Res; 1981 Aug; 218(1-2):388-92. PubMed ID: 6456035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic currents in single smooth muscle cells from the ureter of the guinea-pig.
    Imaizumi Y; Muraki K; Watanabe M
    J Physiol; 1989 Apr; 411():131-59. PubMed ID: 2482352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical threshold of the sensory nerve terminal of the frog muscle spindle: a role of spindle potential for generating afferent impulses.
    Ito F; Fujitsuka N
    Neurosci Lett; 1983 Jun; 37(3):233-7. PubMed ID: 6310449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ruthenium ions on the sensory terminal discharges of the frog muscle spindle.
    Ito F; Fujitsuka N; Komatsu Y
    Brain Res; 1983 Oct; 276(2):277-88. PubMed ID: 6194862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dantrolene and methylxanthines on the sensory nerve terminal of the frog muscle spindle.
    Ito F; Fujitsuka N; Hanaichi T
    Brain Res; 1984 Mar; 294(2):269-80. PubMed ID: 6704726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Ca2+ channel blockers on transmitter release and presynaptic currents at the frog neuromuscular junction.
    Katz E; Ferro PA; Cherksey BD; Sugimori M; Llinás R; Uchitel OD
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):695-706. PubMed ID: 7473230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The role of calcium ions in the modulation of pulsed activity of the isolated muscle spindle in the frog Rana temporaria].
    Arutiunian RS; Ivlev SV; Alekseev NP
    Zh Evol Biokhim Fiziol; 2002; 38(1):57-61. PubMed ID: 11966205
    [No Abstract]   [Full Text] [Related]  

  • 12. Calcium-activated hyperpolarizations in rat locus coeruleus neurons in vitro.
    Osmanović SS; Shefner SA
    J Physiol; 1993 Sep; 469():89-109. PubMed ID: 7903697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The role of active ion transport in the generation of the receptor potential of isolated frog muscle spindles].
    Alekseev NP; Pavlenko IN
    Neirofiziologiia; 1975; 7(4):416-21. PubMed ID: 128705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site of origin of calcium spike in frog muscle spindle.
    Ito F; Komatsu Y; Kaneko N
    Brain Res; 1980 Dec; 202(2):459-63. PubMed ID: 6449228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Calcium and calcium-activated potassium currents of motor nerve endings in the frog].
    Zefirov AL; Khalilov IA; Khamitov KhS
    Neirofiziologiia; 1987; 19(4):467-73. PubMed ID: 2443860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Influence of pH and calcium of the environment on the electrical activity of an isolated muscle spindle].
    Poshina IS; Adizhimolaev TA
    Neirofiziologiia; 1975; 7(3):302-9. PubMed ID: 239355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-methyl aspartate activates voltage-dependent calcium conductance in rat hippocampal pyramidal cells.
    Dingledine R
    J Physiol; 1983 Oct; 343():385-405. PubMed ID: 6139475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium currents and membrane excitability of neurons in the rat's dorsal nucleus of the lateral lemniscus.
    Fu XW; Wu SH; Brezden BL; Kelly JB
    J Neurophysiol; 1996 Aug; 76(2):1121-32. PubMed ID: 8871225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Ca2+ and K+ channel blockers on nerve impulses recorded from guinea-pig postganglionic sympathetic nerve terminals.
    Brock JA; Cunnane TC
    J Physiol; 1995 Dec; 489 ( Pt 2)(Pt 2):389-402. PubMed ID: 8847635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-cell recordings of ionic currents in bovine somatotrophs and their involvement in growth hormone secretion.
    Mason WT; Rawlings SR
    J Physiol; 1988 Nov; 405():577-93. PubMed ID: 2475612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.