These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 25788670)

  • 1. The olfactory tubercle encodes odor valence in behaving mice.
    Gadziola MA; Tylicki KA; Christian DL; Wesson DW
    J Neurosci; 2015 Mar; 35(11):4515-27. PubMed ID: 25788670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping of Learned Odor-Induced Motivated Behaviors in the Mouse Olfactory Tubercle.
    Murata K; Kanno M; Ieki N; Mori K; Yamaguchi M
    J Neurosci; 2015 Jul; 35(29):10581-99. PubMed ID: 26203152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct representation of cue-outcome association by D1 and D2 neurons in the ventral striatum's olfactory tubercle.
    Martiros N; Kapoor V; Kim SE; Murthy VN
    Elife; 2022 Jun; 11():. PubMed ID: 35708179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Neural System that Represents the Association of Odors with Rewarded Outcomes and Promotes Behavioral Engagement.
    Gadziola MA; Stetzik LA; Wright KN; Milton AJ; Arakawa K; Del Mar Cortijo M; Wesson DW
    Cell Rep; 2020 Jul; 32(3):107919. PubMed ID: 32697986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Learning of Odor-Value Association in the Olfactory Striatum.
    Millman DJ; Murthy VN
    J Neurosci; 2020 May; 40(22):4335-4347. PubMed ID: 32321744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamatergic Neurons in the Piriform Cortex Influence the Activity of D1- and D2-Type Receptor-Expressing Olfactory Tubercle Neurons.
    White KA; Zhang YF; Zhang Z; Bhattarai JP; Moberly AH; In 't Zandt EE; Pena-Bravo JI; Mi H; Jia X; Fuccillo MV; Xu F; Ma M; Wesson DW
    J Neurosci; 2019 Nov; 39(48):9546-9559. PubMed ID: 31628176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Neural Representation of Goal-Directed Actions and Outcomes in the Ventral Striatum's Olfactory Tubercle.
    Gadziola MA; Wesson DW
    J Neurosci; 2016 Jan; 36(2):548-60. PubMed ID: 26758844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypothetical Roles of the Olfactory Tubercle in Odor-Guided Eating Behavior.
    Murata K
    Front Neural Circuits; 2020; 14():577880. PubMed ID: 33262693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associative cortex features in the first olfactory brain relay station.
    Doucette W; Gire DH; Whitesell J; Carmean V; Lucero MT; Restrepo D
    Neuron; 2011 Mar; 69(6):1176-87. PubMed ID: 21435561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Odor- and state-dependent olfactory tubercle local field potential dynamics in awake rats.
    Carlson KS; Dillione MR; Wesson DW
    J Neurophysiol; 2014 May; 111(10):2109-23. PubMed ID: 24598519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Attention Controls Olfactory Decisions and the Neural Encoding of Odors.
    Carlson KS; Gadziola MA; Dauster ES; Wesson DW
    Curr Biol; 2018 Jul; 28(14):2195-2205.e4. PubMed ID: 30056854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 6-Hydroxydopamine lesions of the anteromedial ventral striatum impair opposite-sex urinary odor preference in female mice.
    DiBenedictis BT; Olugbemi AO; Baum MJ; Cherry JA
    Behav Brain Res; 2014 Nov; 274():243-7. PubMed ID: 25150042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. History-Dependent Odor Processing in the Mouse Olfactory Bulb.
    Vinograd A; Livneh Y; Mizrahi A
    J Neurosci; 2017 Dec; 37(49):12018-12030. PubMed ID: 29109236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neural mechanism of hierarchical discrimination of odors in the olfactory cortex based on spatiotemporal encoding of odor information.
    Oyamada T; Kashimori Y; Hoshino O; Kambara T
    Biol Cybern; 2000 Jul; 83(1):21-33. PubMed ID: 10933235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adult-born neurons boost odor-reward association.
    Grelat A; Benoit L; Wagner S; Moigneu C; Lledo PM; Alonso M
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2514-2519. PubMed ID: 29467284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representations of odors in the rat orbitofrontal cortex change during and after learning.
    Alvarez P; Eichenbaum H
    Behav Neurosci; 2002 Jun; 116(3):421-33. PubMed ID: 12049323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the dopaminergic pathway from VTA to the medial olfactory tubercle generates odor-preference and reward.
    Zhang Z; Liu Q; Wen P; Zhang J; Rao X; Zhou Z; Zhang H; He X; Li J; Zhou Z; Xu X; Zhang X; Luo R; Lv G; Li H; Cao P; Wang L; Xu F
    Elife; 2017 Dec; 6():. PubMed ID: 29251597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Associative encoding in posterior piriform cortex during odor discrimination and reversal learning.
    Calu DJ; Roesch MR; Stalnaker TA; Schoenbaum G
    Cereb Cortex; 2007 Jun; 17(6):1342-9. PubMed ID: 16882682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel odor processing by two anatomically distinct olfactory bulb target structures.
    Payton CA; Wilson DA; Wesson DW
    PLoS One; 2012; 7(4):e34926. PubMed ID: 22496877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex.
    Schoenbaum G; Eichenbaum H
    J Neurophysiol; 1995 Aug; 74(2):733-50. PubMed ID: 7472378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.