These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25788690)

  • 1. Single granule cells excite Golgi cells and evoke feedback inhibition in the cochlear nucleus.
    Yaeger DB; Trussell LO
    J Neurosci; 2015 Mar; 35(11):4741-50. PubMed ID: 25788690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Golgi cells in the superficial granule cell domain overlying the ventral cochlear nucleus: morphology and electrophysiology in slices.
    Ferragamo MJ; Golding NL; Gardner SM; Oertel D
    J Comp Neurol; 1998 Nov; 400(4):519-28. PubMed ID: 9786412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of GIRK channels by muscarinic receptors and group II metabotropic glutamate receptors suppresses Golgi cell activity in the cochlear nucleus of mice.
    Irie T; Fukui I; Ohmori H
    J Neurophysiol; 2006 Nov; 96(5):2633-44. PubMed ID: 16855110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory Golgi cells are interconnected predominantly by electrical synapses.
    Yaeger DB; Trussell LO
    J Neurophysiol; 2016 Aug; 116(2):540-51. PubMed ID: 27121584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular layer inhibitory interneurons provide feedforward and lateral inhibition in the dorsal cochlear nucleus.
    Roberts MT; Trussell LO
    J Neurophysiol; 2010 Nov; 104(5):2462-73. PubMed ID: 20719922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic inputs to granule cells of the dorsal cochlear nucleus.
    Balakrishnan V; Trussell LO
    J Neurophysiol; 2008 Jan; 99(1):208-19. PubMed ID: 17959739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serotonin regulates dynamics of cerebellar granule cell activity by modulating tonic inhibition.
    Fleming E; Hull C
    J Neurophysiol; 2019 Jan; 121(1):105-114. PubMed ID: 30281395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential Pattern Formation in the Cerebellar Granular Layer.
    Bratby P; Sneyd J; Montgomery J
    Cerebellum; 2017 Apr; 16(2):438-449. PubMed ID: 27543118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory properties underlying non-monotonic input-output relationship in low-frequency spherical bushy neurons of the gerbil.
    Kuenzel T; Nerlich J; Wagner H; Rübsamen R; Milenkovic I
    Front Neural Circuits; 2015; 9():14. PubMed ID: 25873864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliable control of spike rate and spike timing by rapid input transients in cerebellar stellate cells.
    Suter KJ; Jaeger D
    Neuroscience; 2004; 124(2):305-17. PubMed ID: 14980381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus.
    Manis PB; Spirou GA; Wright DD; Paydar S; Ryugo DK
    J Comp Neurol; 1994 Oct; 348(2):261-76. PubMed ID: 7814691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic and synaptic properties of vertical cells of the mouse dorsal cochlear nucleus.
    Kuo SP; Lu HW; Trussell LO
    J Neurophysiol; 2012 Aug; 108(4):1186-98. PubMed ID: 22572947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs.
    Holtzman T; Rajapaksa T; Mostofi A; Edgley SA
    J Physiol; 2006 Jul; 574(Pt 2):491-507. PubMed ID: 16709640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two forms of feedback inhibition determine the dynamical state of a small hippocampal network.
    Zeldenrust F; Wadman WJ
    Neural Netw; 2009 Oct; 22(8):1139-58. PubMed ID: 19679445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of bursting by local inhibition in the rat subiculum in vitro.
    Menendez de la Prida L
    J Physiol; 2003 May; 549(Pt 1):219-30. PubMed ID: 12665605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-dependent modulation of inhibitory synaptic kinetics in the cochlear nucleus.
    Nerlich J; Keine C; Rübsamen R; Burger RM; Milenkovic I
    Front Neural Circuits; 2014; 8():145. PubMed ID: 25565972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic responses in cochlear nucleus neurons evoked by activation of the olivocochlear system.
    Mulders WH; Paolini AG; Needham K; Robertson D
    Hear Res; 2009 Oct; 256(1-2):85-92. PubMed ID: 19607895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Octopus cells of the mammalian ventral cochlear nucleus sense the rate of depolarization.
    Ferragamo MJ; Oertel D
    J Neurophysiol; 2002 May; 87(5):2262-70. PubMed ID: 11976365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabotropic glutamate receptors in the main olfactory bulb drive granule cell-mediated inhibition.
    Heinbockel T; Laaris N; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):858-70. PubMed ID: 17093122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.