BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25789177)

  • 1. Hunting increases phosphorylation of calcium/calmodulin-dependent protein kinase type II in adult barn owls.
    Nichols GS; DeBello WM
    Neural Plast; 2015; 2015():819257. PubMed ID: 25789177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional regulation of the cAMP response element binding protein encodes spatial map alignment in prism-adapting barn owls.
    Nichols GS; DeBello WM
    J Neurosci; 2008 Oct; 28(40):9898-909. PubMed ID: 18829948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hunting increases adaptive auditory map plasticity in adult barn owls.
    Bergan JF; Ro P; Ro D; Knudsen EI
    J Neurosci; 2005 Oct; 25(42):9816-20. PubMed ID: 16237185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive axonal remodeling in the midbrain auditory space map.
    DeBello WM; Feldman DE; Knudsen EI
    J Neurosci; 2001 May; 21(9):3161-74. PubMed ID: 11312301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning drives differential clustering of axodendritic contacts in the barn owl auditory system.
    McBride TJ; Rodriguez-Contreras A; Trinh A; Bailey R; Debello WM
    J Neurosci; 2008 Jul; 28(27):6960-73. PubMed ID: 18596170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The optic tectum controls visually guided adaptive plasticity in the owl's auditory space map.
    Hyde PS; Knudsen EI
    Nature; 2002 Jan; 415(6867):73-6. PubMed ID: 11780119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axodendritic contacts onto calcium/calmodulin-dependent protein kinase type II-expressing neurons in the barn owl auditory space map.
    Rodriguez-Contreras A; Liu XB; DeBello WM
    J Neurosci; 2005 Jun; 25(23):5611-22. PubMed ID: 15944389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation in the auditory space map of the barn owl.
    Gutfreund Y; Knudsen EI
    J Neurophysiol; 2006 Aug; 96(2):813-25. PubMed ID: 16707713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incremental training increases the plasticity of the auditory space map in adult barn owls.
    Linkenhoker BA; Knudsen EI
    Nature; 2002 Sep; 419(6904):293-6. PubMed ID: 12239566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome changes associated with instructed learning in the barn owl auditory localization pathway.
    Swofford JA; DeBello WM
    Dev Neurobiol; 2007 Sep; 67(11):1457-77. PubMed ID: 17526003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple sites of adaptive plasticity in the owl's auditory localization pathway.
    DeBello WM; Knudsen EI
    J Neurosci; 2004 Aug; 24(31):6853-61. PubMed ID: 15295019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The adaptation of visual and auditory integration in the barn owl superior colliculus with Spike Timing Dependent Plasticity.
    Huo J; Murray A
    Neural Netw; 2009 Sep; 22(7):913-21. PubMed ID: 19084371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The presence and activation of two essential transcription factors (cAMP response element-binding protein and cAMP-dependent transcription factor ATF1) in the two-cell mouse embryo.
    Jin XL; O'Neill C
    Biol Reprod; 2010 Feb; 82(2):459-68. PubMed ID: 19776387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visuomotor adaptation to displacing prisms by adult and baby barn owls.
    Knudsen EI; Knudsen PF
    J Neurosci; 1989 Sep; 9(9):3297-305. PubMed ID: 2795163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early life exposure to noise alters the representation of auditory localization cues in the auditory space map of the barn owl.
    Efrati A; Gutfreund Y
    J Neurophysiol; 2011 May; 105(5):2522-35. PubMed ID: 21368005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of Ca²⁺/calmodulin-dependent protein kinase II on insulin gene expression in MIN6 cells.
    Suefuji M; Furukawa N; Matsumoto K; Oiso H; Shimoda S; Yoshinaga T; Matsuyama R; Miyagawa K; Kondo T; Kawashima J; Tsuruzoe K; Araki E
    Biochem Biophys Res Commun; 2012 May; 421(4):801-7. PubMed ID: 22554507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats.
    Haberny SL; Carr KD
    Neuroscience; 2005; 132(4):1035-43. PubMed ID: 15857708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CaMKII is differentially localized in synaptic regions of Kenyon cells within the mushroom bodies of the honeybee brain.
    Pasch E; Muenz TS; Rössler W
    J Comp Neurol; 2011 Dec; 519(18):3700-12. PubMed ID: 21674485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of calcium calmodulin-dependent protein kinase II following lateral fluid percussion brain injury in rats.
    Folkerts MM; Parks EA; Dedman JR; Kaetzel MA; Lyeth BG; Berman RF
    J Neurotrauma; 2007 Apr; 24(4):638-50. PubMed ID: 17439347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gated visual input to the central auditory system.
    Gutfreund Y; Zheng W; Knudsen EI
    Science; 2002 Aug; 297(5586):1556-9. PubMed ID: 12202831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.