These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 25789423)
1. Ultrasound-modulated fluorescence based on donor-acceptor-labeled microbubbles. Liu Y; Feshitan JA; Wei MY; Borden MA; Yuan B J Biomed Opt; 2015 Mar; 20(3):036012. PubMed ID: 25789423 [TBL] [Abstract][Full Text] [Related]
2. Ultrasound-modulated fluorescence based on fluorescent microbubbles. Liu Y; Feshitan JA; Wei MY; Borden MA; Yuan B J Biomed Opt; 2014 Aug; 19(8):085005. PubMed ID: 25104407 [TBL] [Abstract][Full Text] [Related]
3. Ultrasound-modulated fluorescence based on a fluorophore-quencher-labeled microbubble system. Yuan B J Biomed Opt; 2009; 14(2):024043. PubMed ID: 19405771 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096 [TBL] [Abstract][Full Text] [Related]
5. Strength in numbers: effects of acceptor abundance on FRET efficiency. Fábián ÁI; Rente T; Szöllosi J; Mátyus L; Jenei A Chemphyschem; 2010 Dec; 11(17):3713-21. PubMed ID: 20936620 [TBL] [Abstract][Full Text] [Related]
6. Rise-time of FRET-acceptor fluorescence tracks protein folding. Lindhoud S; Westphal AH; van Mierlo CP; Visser AJ; Borst JW Int J Mol Sci; 2014 Dec; 15(12):23836-50. PubMed ID: 25535076 [TBL] [Abstract][Full Text] [Related]
7. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. Dietrich A; Buschmann V; Müller C; Sauer M J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691 [TBL] [Abstract][Full Text] [Related]
8. Detecting RNA/DNA hybridization using double-labeled donor probes with enhanced fluorescence resonance energy transfer signals. Okamura Y; Watanabe Y Methods Mol Biol; 2006; 335():43-56. PubMed ID: 16785619 [TBL] [Abstract][Full Text] [Related]
9. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy. Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202 [TBL] [Abstract][Full Text] [Related]
10. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff. Mahajan PG; Bhopate DP; Kolekar GB; Patil SR J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163 [TBL] [Abstract][Full Text] [Related]
11. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312 [TBL] [Abstract][Full Text] [Related]
12. Extending Förster resonance energy transfer measurements beyond 100 Å using common organic fluorophores: enhanced transfer in the presence of multiple acceptors. Maliwal BP; Raut S; Fudala R; D'Auria S; Marzullo VM; Luini A; Gryczynski I; Gryczynski Z J Biomed Opt; 2012 Jan; 17(1):011006. PubMed ID: 22352640 [TBL] [Abstract][Full Text] [Related]
13. A simulation study on the influence of energy migration and relative interaction strengths of homo- and hetero-FRET on the net FRET efficiency. Rout J; Swain BC; Sakshi ; Biswas S; Das AK; Tripathy U Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117599. PubMed ID: 31751800 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence energy transfer-sensitized photobleaching of a fluorescent label as a tool to study donor-acceptor distance distributions and dynamics in protein assemblies: studies of a complex of biotinylated IgM with streptavidin and aggregates of concanavalin A. Mekler VM; Averbakh AZ; Sudarikov AB; Kharitonova OV J Photochem Photobiol B; 1997 Oct; 40(3):278-87. PubMed ID: 9372617 [TBL] [Abstract][Full Text] [Related]
15. Optical detection of harmonic oscillations in fluorescent dye-loaded microbubbles ensonified by ultrasound. Schutt CE; Ibsen S; Benchimol M; Hsu M; Esener S Opt Lett; 2015 Jun; 40(12):2834-7. PubMed ID: 26076274 [TBL] [Abstract][Full Text] [Related]
16. Improving lanthanide-based resonance energy transfer detection by increasing donor-acceptor distances. Vogel KW; Vedvik KL J Biomol Screen; 2006 Jun; 11(4):439-43. PubMed ID: 16751339 [TBL] [Abstract][Full Text] [Related]
17. FRET or no FRET: a quantitative comparison. Berney C; Danuser G Biophys J; 2003 Jun; 84(6):3992-4010. PubMed ID: 12770904 [TBL] [Abstract][Full Text] [Related]
18. Nanophotonic control of the Förster resonance energy transfer efficiency. Blum C; Zijlstra N; Lagendijk A; Wubs M; Mosk AP; Subramaniam V; Vos WL Phys Rev Lett; 2012 Nov; 109(20):203601. PubMed ID: 23215487 [TBL] [Abstract][Full Text] [Related]