BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 25789828)

  • 1. Towards genome-wide experimental genetics in the in vivo malaria model parasite Plasmodium berghei.
    Matz JM; Kooij TW
    Pathog Glob Health; 2015 Mar; 109(2):46-60. PubMed ID: 25789828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expansion of experimental genetics approaches for Plasmodium berghei with versatile transfection vectors.
    Kooij TW; Rauch MM; Matuschewski K
    Mol Biochem Parasitol; 2012 Sep; 185(1):19-26. PubMed ID: 22705315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics and Outcomes of
    Conteh S; Kolasny J; Robbins YL; Pyana P; Büscher P; Musgrove J; Butler B; Lambert L; Gorres JP; Duffy PE
    Am J Trop Med Hyg; 2020 Nov; 103(5):1893-1901. PubMed ID: 32815499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Conservation of P48/45 Proteins in the Transmission Stages of
    Cao Y; Hart RJ; Bansal GP; Kumar N
    mBio; 2018 Sep; 9(5):. PubMed ID: 30181253
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Conteh S; Anderson C; Lambert L; Orr-Gonzalez S; Herrod J; Robbins YL; Carter D; Karhemere SBS; Pyana P; Büscher P; Duffy PE
    Am J Trop Med Hyg; 2017 Apr; 96(4):835-841. PubMed ID: 28115674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultrasensitive NanoLuc-based luminescence system for monitoring Plasmodium berghei throughout its life cycle.
    De Niz M; Stanway RR; Wacker R; Keller D; Heussler VT
    Malar J; 2016 Apr; 15():232. PubMed ID: 27102897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asparagine requirement in Plasmodium berghei as a target to prevent malaria transmission and liver infections.
    Nagaraj VA; Mukhi D; Sathishkumar V; Subramani PA; Ghosh SK; Pandey RR; Shetty MC; Padmanaban G
    Nat Commun; 2015 Nov; 6():8775. PubMed ID: 26531182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of calreticulin from Anopheles stephensi midgut cells and functional assay of the recombinant calreticulin with Plasmodium berghei ookinetes.
    Borhani Dizaji N; Basseri HR; Naddaf SR; Heidari M
    Gene; 2014 Oct; 550(2):245-52. PubMed ID: 25150160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene targeting in malaria parasites.
    Ménard R; Janse C
    Methods; 1997 Oct; 13(2):148-57. PubMed ID: 9405198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development.
    Yoshida S; Shimada Y; Kondoh D; Kouzuma Y; Ghosh AK; Jacobs-Lorena M; Sinden RE
    PLoS Pathog; 2007 Dec; 3(12):e192. PubMed ID: 18159942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression profiling of Plasmodium berghei HSP70 genes for generation of bright red fluorescent parasites.
    Hliscs M; Nahar C; Frischknecht F; Matuschewski K
    PLoS One; 2013; 8(8):e72771. PubMed ID: 24013507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malaria parasites in mosquitoes: laboratory models, evolutionary temptation and the real world.
    Boëte C
    Trends Parasitol; 2005 Oct; 21(10):445-7. PubMed ID: 16099724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei.
    Janse CJ; Ramesar J; Waters AP
    Nat Protoc; 2006; 1(1):346-56. PubMed ID: 17406255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motility and infectivity of Plasmodium berghei sporozoites expressing avian Plasmodium gallinaceum circumsporozoite protein.
    Tewari R; Rathore D; Crisanti A
    Cell Microbiol; 2005 May; 7(5):699-707. PubMed ID: 15839899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow cytometry-assisted rapid isolation of recombinant Plasmodium berghei parasites exemplified by functional analysis of aquaglyceroporin.
    Kenthirapalan S; Waters AP; Matuschewski K; Kooij TW
    Int J Parasitol; 2012 Dec; 42(13-14):1185-92. PubMed ID: 23137753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfection of malaria parasites.
    Waters AP; Thomas AW; van Dijk MR; Janse CJ
    Methods; 1997 Oct; 13(2):134-47. PubMed ID: 9405197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Assessment of Transgenic Rodent Parasites for the Preclinical Evaluation of Malaria Vaccines.
    Espinosa DA; Radtke AJ; Zavala F
    Methods Mol Biol; 2016; 1403():583-601. PubMed ID: 27076155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical role of a K+ channel in Plasmodium berghei transmission revealed by targeted gene disruption.
    Ellekvist P; Maciel J; Mlambo G; Ricke CH; Colding H; Klaerke DA; Kumar N
    Proc Natl Acad Sci U S A; 2008 Apr; 105(17):6398-402. PubMed ID: 18434537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved transfection and new selectable markers for the rodent malaria parasite Plasmodium yoelii.
    Jongco AM; Ting LM; Thathy V; Mota MM; Kim K
    Mol Biochem Parasitol; 2006 Apr; 146(2):242-50. PubMed ID: 16458371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmodium vinckei genomes provide insights into the pan-genome and evolution of rodent malaria parasites.
    Ramaprasad A; Klaus S; Douvropoulou O; Culleton R; Pain A
    BMC Biol; 2021 Apr; 19(1):69. PubMed ID: 33888092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.