BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 25789828)

  • 41. Division and Transmission: Malaria Parasite Development in the Mosquito.
    Guttery DS; Zeeshan M; Ferguson DJP; Holder AA; Tewari R
    Annu Rev Microbiol; 2022 Sep; 76():113-134. PubMed ID: 35609946
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle.
    Dimopoulos G; Seeley D; Wolf A; Kafatos FC
    EMBO J; 1998 Nov; 17(21):6115-23. PubMed ID: 9799221
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dominant negative mutant of Plasmodium Rad51 causes reduced parasite burden in host by abrogating DNA double-strand break repair.
    Roy N; Bhattacharyya S; Chakrabarty S; Laskar S; Babu SM; Bhattacharyya MK
    Mol Microbiol; 2014 Oct; 94(2):353-66. PubMed ID: 25145341
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conditional Gene Deletion in Mammalian and Mosquito Stages of Plasmodium berghei Using Dimerizable Cre Recombinase.
    Fernandes P; Loubens M; Silvie O; Briquet S
    Methods Mol Biol; 2021; 2369():101-120. PubMed ID: 34313986
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anopheles mosquitoes: not just flying malaria vectors... especially in the field.
    Boëte C
    Trends Parasitol; 2009 Feb; 25(2):53-5. PubMed ID: 19095498
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reverse genetics analysis of antiparasitic responses in the malaria vector, Anopheles gambiae.
    Blandin SA; Levashina EA
    Methods Mol Biol; 2008; 415():365-77. PubMed ID: 18370165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plasmodium berghei Infection in BALB/c Mice Model as an Animal Model for Malaria Disease Research.
    Raz A
    Methods Mol Biol; 2022; 2410():589-595. PubMed ID: 34914070
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gene targeting demonstrates that the Plasmodium berghei subtilisin PbSUB2 is essential for red cell invasion and reveals spontaneous genetic recombination events.
    Uzureau P; Barale JC; Janse CJ; Waters AP; Breton CB
    Cell Microbiol; 2004 Jan; 6(1):65-78. PubMed ID: 14678331
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Malaria Cell Atlas: Single parasite transcriptomes across the complete
    Howick VM; Russell AJC; Andrews T; Heaton H; Reid AJ; Natarajan K; Butungi H; Metcalf T; Verzier LH; Rayner JC; Berriman M; Herren JK; Billker O; Hemberg M; Talman AM; Lawniczak MKN
    Science; 2019 Aug; 365(6455):. PubMed ID: 31439762
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite.
    Kenthirapalan S; Waters AP; Matuschewski K; Kooij TW
    Nat Commun; 2016 Jan; 7():10519. PubMed ID: 26796412
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved negative selection protocol for Plasmodium berghei in the rodent malarial model.
    Orr RY; Philip N; Waters AP
    Malar J; 2012 Mar; 11():103. PubMed ID: 22463060
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gene knockdown in malaria parasites via non-canonical RNAi.
    Hentzschel F; Mitesser V; Fraschka SA; Krzikalla D; Carrillo EH; Berkhout B; Bártfai R; Mueller AK; Grimm D
    Nucleic Acids Res; 2020 Jan; 48(1):e2. PubMed ID: 31680162
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The dimerisable Cre recombinase allows conditional genome editing in the mosquito stages of Plasmodium berghei.
    Fernandes P; Briquet S; Patarot D; Loubens M; Hoareau-Coudert B; Silvie O
    PLoS One; 2020; 15(10):e0236616. PubMed ID: 33044964
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A rapid and robust selection procedure for generating drug-selectable marker-free recombinant malaria parasites.
    Manzoni G; Briquet S; Risco-Castillo V; Gaultier C; Topçu S; Ivănescu ML; Franetich JF; Hoareau-Coudert B; Mazier D; Silvie O
    Sci Rep; 2014 Apr; 4():4760. PubMed ID: 24755823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improvement of an in vitro drug selection method for generating transgenic Plasmodium berghei parasites.
    Soga A; Shirozu T; Ko-Ketsu M; Fukumoto S
    Malar J; 2019 Jun; 18(1):215. PubMed ID: 31238932
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transfection of rodent malaria parasites.
    Philip N; Orr R; Waters AP
    Methods Mol Biol; 2013; 923():99-125. PubMed ID: 22990773
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A scalable pipeline for highly effective genetic modification of a malaria parasite.
    Pfander C; Anar B; Schwach F; Otto TD; Brochet M; Volkmann K; Quail MA; Pain A; Rosen B; Skarnes W; Rayner JC; Billker O
    Nat Methods; 2011 Oct; 8(12):1078-82. PubMed ID: 22020067
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development and application of a positive-negative selectable marker system for use in reverse genetics in Plasmodium.
    Braks JA; Franke-Fayard B; Kroeze H; Janse CJ; Waters AP
    Nucleic Acids Res; 2006 Mar; 34(5):e39. PubMed ID: 16537837
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High efficacy in vitro selection procedure for generating transgenic parasites of Plasmodium berghei using an antibiotic toxic to rodent hosts.
    Soga A; Bando H; Ko-Ketsu M; Masuda-Suganuma H; Kawazu SI; Fukumoto S
    Sci Rep; 2017 Jun; 7(1):4001. PubMed ID: 28638105
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Stem Cell Strategy Identifies Glycophorin C as a Major Erythrocyte Receptor for the Rodent Malaria Parasite Plasmodium berghei.
    Yiangou L; Montandon R; Modrzynska K; Rosen B; Bushell W; Hale C; Billker O; Rayner JC; Pance A
    PLoS One; 2016; 11(6):e0158238. PubMed ID: 27362409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.