These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 25789851)
1. Use of rhamnolipid biosurfactant for membrane biofouling prevention and cleaning. Kim LH; Jung Y; Kim SJ; Kim CM; Yu HW; Park HD; Kim IS Biofouling; 2015; 31(2):211-20. PubMed ID: 25789851 [TBL] [Abstract][Full Text] [Related]
2. Rhamnolipids from Pseudomonas aeruginosa strain W10; as antibiofilm/antibiofouling products for metal protection. Chebbi A; Elshikh M; Haque F; Ahmed S; Dobbin S; Marchant R; Sayadi S; Chamkha M; Banat IM J Basic Microbiol; 2017 May; 57(5):364-375. PubMed ID: 28156000 [TBL] [Abstract][Full Text] [Related]
3. Feasibility of supercritical CO₂ treatment for controlling biofouling in the reverse osmosis process. Mun S; Baek Y; Kim C; Lee YW; Yoon J Biofouling; 2012; 28(6):627-33. PubMed ID: 22726211 [TBL] [Abstract][Full Text] [Related]
8. Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass. Sodagari M; Wang H; Newby BM; Ju LK Colloids Surf B Biointerfaces; 2013 Mar; 103():121-8. PubMed ID: 23201728 [TBL] [Abstract][Full Text] [Related]
9. Using Pseudomonas aeruginosa PAO1 to evaluate hydrogen peroxide as a biofouling control agent in membrane treatment systems. Yang Y; Kitajima M; Pham TP; Yu L; Ling R; Gin KY; Reinhard M Lett Appl Microbiol; 2016 Dec; 63(6):488-494. PubMed ID: 27682323 [TBL] [Abstract][Full Text] [Related]
10. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932 [TBL] [Abstract][Full Text] [Related]
11. The influence of antiscalants on biofouling of RO membranes in seawater desalination. Sweity A; Oren Y; Ronen Z; Herzberg M Water Res; 2013 Jun; 47(10):3389-98. PubMed ID: 23615335 [TBL] [Abstract][Full Text] [Related]
12. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795 [TBL] [Abstract][Full Text] [Related]
13. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. Hošková M; Ježdík R; Schreiberová O; Chudoba J; Šír M; Čejková A; Masák J; Jirků V; Řezanka T J Biotechnol; 2015 Jan; 193():45-51. PubMed ID: 25433178 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of biofilm formation under different nutrient levels and the effect on biofouling of a reverse osmosis membrane system. Chen X; Suwarno SR; Chong TH; McDougald D; Kjelleberg S; Cohen Y; Fane AG; Rice SA Biofouling; 2013; 29(3):319-30. PubMed ID: 23528128 [TBL] [Abstract][Full Text] [Related]
15. lux-marked Pseudomonas aeruginosa lipopolysaccharide production in the presence of rhamnolipid. Chen G; Zhu H Colloids Surf B Biointerfaces; 2005 Mar; 41(1):43-8. PubMed ID: 15698755 [TBL] [Abstract][Full Text] [Related]
16. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006. De Rienzo MA; Martin PJ Curr Microbiol; 2016 Aug; 73(2):183-9. PubMed ID: 27113589 [TBL] [Abstract][Full Text] [Related]
17. Designer rhamnolipids by reduction of congener diversity: production and characterization. Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456 [TBL] [Abstract][Full Text] [Related]
18. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Boles BR; Thoendel M; Singh PK Mol Microbiol; 2005 Sep; 57(5):1210-23. PubMed ID: 16101996 [TBL] [Abstract][Full Text] [Related]
19. Production of rhamnolipids in solid-state cultivation: Characterization, downstream processing and application in the cleaning of contaminated soils. Camilios Neto D; Meira JA; Tiburtius E; Zamora PP; Bugay C; Mitchell DA; Krieger N Biotechnol J; 2009 May; 4(5):748-55. PubMed ID: 19452471 [TBL] [Abstract][Full Text] [Related]
20. Effects of rhamnolipids and shear on initial attachment of Pseudomonas aeruginosa PAO1 in glass flow chambers. Raya A; Sodagari M; Pinzon NM; He X; Zhang Newby BM; Ju LK Environ Sci Pollut Res Int; 2010 Nov; 17(9):1529-38. PubMed ID: 20509051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]