These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 25789912)

  • 1. Sorption mechanisms of organic compounds by carbonaceous materials: site energy distribution consideration.
    Shen X; Guo X; Zhang M; Tao S; Wang X
    Environ Sci Technol; 2015 Apr; 49(8):4894-902. PubMed ID: 25789912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Displacement and competitive sorption of organic pollutants on multiwalled carbon nanotubes.
    Shen X; Wang X; Tao S; Xing B
    Environ Sci Pollut Res Int; 2014 Oct; 21(20):11979-86. PubMed ID: 25028316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption mechanisms of phenanthrene, lindane, and atrazine with various humic acid fractions from a single soil sample.
    Wang X; Guo X; Yang Y; Tao S; Xing B
    Environ Sci Technol; 2011 Mar; 45(6):2124-30. PubMed ID: 21341701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes.
    Yang K; Wang X; Zhu L; Xing B
    Environ Sci Technol; 2006 Sep; 40(18):5804-10. PubMed ID: 17007144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the simulated diagenesis on sorption of naphthalene and 1-naphthol by soil organic matter and its precursors.
    Guo X; Wang X; Zhou X; Ding X; Fu B; Tao S; Xing B
    Environ Sci Technol; 2013; 47(21):12148-55. PubMed ID: 24041398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials.
    Kah M; Sigmund G; Xiao F; Hofmann T
    Water Res; 2017 Nov; 124():673-692. PubMed ID: 28825985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption and conformation of a cationic surfactant on single-walled carbon nanotubes and their influence on naphthalene sorption.
    Yang K; Jing Q; Wu W; Zhu L; Xing B
    Environ Sci Technol; 2010 Jan; 44(2):681-7. PubMed ID: 20000820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition.
    Guo X; Wang X; Zhou X; Kong X; Tao S; Xing B
    Environ Sci Technol; 2012 Jul; 46(13):7252-9. PubMed ID: 22676433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes.
    Cho HH; Smith BA; Wnuk JD; Fairbrother DH; Ball WP
    Environ Sci Technol; 2008 Apr; 42(8):2899-905. PubMed ID: 18497141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon.
    Wang B; Zhang W; Li H; Fu H; Qu X; Zhu D
    Environ Pollut; 2017 Jan; 220(Pt B):1349-1358. PubMed ID: 27838059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural benefits of bisphenol S and its analogs resulting in their high sorption on carbon nanotubes and graphite.
    Guo H; Li H; Liang N; Chen F; Liao S; Zhang D; Wu M; Pan B
    Environ Sci Pollut Res Int; 2016 May; 23(9):8976-84. PubMed ID: 26822215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of kerogen heterogeneity on sorption of organic pollutants. 2. Sorption equilibria.
    Yang C; Yu Z; Xiao B; Huang W; Fu J; Dang Z
    Environ Toxicol Chem; 2009 Aug; 28(8):1592-8. PubMed ID: 19309179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of naphthalene and 2-naphthol onto porous carbonaceous materials as a function of pore size, metals, and oxygen-containing groups.
    Wang B; Wang Y; Wang J
    Environ Sci Pollut Res Int; 2020 May; 27(15):18717-18728. PubMed ID: 32207019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of copper, lead, and cadmium on the sorption and desorption of atrazine onto and from carbon nanotubes.
    Chen GC; Shan XQ; Wang YS; Pei ZG; Shen XE; Wen B; Owens G
    Environ Sci Technol; 2008 Nov; 42(22):8297-302. PubMed ID: 19068809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Sorption to Carbon-Based Materials and Nanomaterials Using Inverse Liquid Chromatography.
    Metzelder F; Funck M; Hüffer T; Schmidt TC
    Environ Sci Technol; 2018 Sep; 52(17):9731-9740. PubMed ID: 30075076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of carbonaceous materials for sorbing polychlorinated biphenyls from aqueous solution.
    Beless B; Rifai HS; Rodrigues DF
    Environ Sci Technol; 2014 Sep; 48(17):10372-9. PubMed ID: 25110809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.
    Brooks AJ; Lim HN; Kilduff JE
    Nanotechnology; 2012 Jul; 23(29):294008. PubMed ID: 22743805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of atrazine on conventional and surface modified activated carbons.
    Chingombe P; Saha B; Wakeman RJ
    J Colloid Interface Sci; 2006 Oct; 302(2):408-16. PubMed ID: 16870200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of humic acids on sorption of alkanes by carbon nanotubes--implications for the dominant sorption mode.
    Hüffer T; Schroth S; Schmidt TC
    Chemosphere; 2015 Jan; 119():1169-1175. PubMed ID: 25460758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorbed atrazine shifts into non-desorbable sites of soil organic matter during aging.
    Park JH; Feng Y; Cho SY; Voice TC; Boyd SA
    Water Res; 2004 Nov; 38(18):3881-92. PubMed ID: 15380978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.