BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25789976)

  • 1. Modeling the radical chemistry in an oxidation flow reactor: radical formation and recycling, sensitivities, and the OH exposure estimation equation.
    Li R; Palm BB; Ortega AM; Hlywiak J; Hu W; Peng Z; Day DA; Knote C; Brune WH; de Gouw JA; Jimenez JL
    J Phys Chem A; 2015 May; 119(19):4418-32. PubMed ID: 25789976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photochemical aging and secondary organic aerosols generated from limonene in an oxidation flow reactor.
    Sbai SE; Farida B
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):18411-18420. PubMed ID: 31049860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric photochemistry and secondary aerosol formation of urban air in Lyon, France.
    Sbai SE; Li C; Boreave A; Charbonnel N; Perrier S; Vernoux P; Bentayeb F; George C; Gil S
    J Environ Sci (China); 2021 Jan; 99():311-323. PubMed ID: 33183710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of ozone and radical chemistry on limonene organic aerosol production and thermal characteristics.
    Pathak RK; Salo K; Emanuelsson EU; Cai C; Lutz A; Hallquist AM; Hallquist M
    Environ Sci Technol; 2012 Nov; 46(21):11660-9. PubMed ID: 22985264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2.
    Rosenfeldt EJ; Linden KG; Canonica S; von Gunten U
    Water Res; 2006 Dec; 40(20):3695-704. PubMed ID: 17078993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.
    Tkacik DS; Lambe AT; Jathar S; Li X; Presto AA; Zhao Y; Blake D; Meinardi S; Jayne JT; Croteau PL; Robinson AL
    Environ Sci Technol; 2014 Oct; 48(19):11235-42. PubMed ID: 25188317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical chemistry in oxidation flow reactors for atmospheric chemistry research.
    Peng Z; Jimenez JL
    Chem Soc Rev; 2020 May; 49(9):2570-2616. PubMed ID: 32313911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling hydroxyl radical distribution and trialkyl phosphates oxidation in UV-H2O2 photoreactors using computational fluid dynamics.
    Santoro D; Raisee M; Moghaddami M; Ducoste J; Sasges M; Liberti L; Notarnicola M
    Environ Sci Technol; 2010 Aug; 44(16):6233-41. PubMed ID: 20704221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding and modeling the formation and transformation of hydrogen peroxide in water irradiated by 254 nm ultraviolet (UV) and 185 nm vacuum UV (VUV): Effects of pH and oxygen.
    Zhang Q; Wang L; Chen B; Chen Y; Ma J
    Chemosphere; 2020 Apr; 244():125483. PubMed ID: 31816545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced oxidation processes: mechanistic aspects.
    von Sonntag C
    Water Sci Technol; 2008; 58(5):1015-21. PubMed ID: 18824799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic aerosol yields from α-pinene oxidation: bridging the gap between first-generation yields and aging chemistry.
    Henry KM; Lohaus T; Donahue NM
    Environ Sci Technol; 2012 Nov; 46(22):12347-54. PubMed ID: 23088520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental revaluation of the importance of the abstraction channel in the reactions of monoterpenes with OH radicals.
    Rio C; Flaud PM; Loison JC; Villenave E
    Chemphyschem; 2010 Dec; 11(18):3962-70. PubMed ID: 21110376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of .OH radical reaction rate constants for phenol and chlorinated phenols using UV/H2O2 photo-oxidation.
    De AK; Chaudhuri B; Bhattacharjee S; Dutta BK
    J Hazard Mater; 1999 Jan; 64(1):91-104. PubMed ID: 10337395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Process-Level Modeling Can Simultaneously Explain Secondary Organic Aerosol Evolution in Chambers and Flow Reactors.
    He Y; Lambe AT; Seinfeld JH; Cappa CD; Pierce JR; Jathar SH
    Environ Sci Technol; 2022 May; 56(10):6262-6273. PubMed ID: 35504037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemical aging of secondary organic aerosols generated from the photooxidation of polycyclic aromatic hydrocarbons in the gas-phase.
    Riva M; Robinson ES; Perraudin E; Donahue NM; Villenave E
    Environ Sci Technol; 2015 May; 49(9):5407-16. PubMed ID: 25856309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary organic aerosol formation from cyclohexene ozonolysis: effect of OH scavenger and the role of radical chemistry.
    Keywood MD; Kroll JH; Varutbangkul V; Bahreini R; Flagan RC; Seinfeld JH
    Environ Sci Technol; 2004 Jun; 38(12):3343-50. PubMed ID: 15260334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of humidity, temperature, and radicals on the formation and thermal properties of secondary organic aerosol (SOA) from ozonolysis of β-pinene.
    Emanuelsson EU; Watne ÅK; Lutz A; Ljungström E; Hallquist M
    J Phys Chem A; 2013 Oct; 117(40):10346-58. PubMed ID: 24001129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of relative humidity on cyclohexene SOA formation from OH photooxidation.
    Liu S; Tsona NT; Zhang Q; Jia L; Xu Y; Du L
    Chemosphere; 2019 Sep; 231():478-486. PubMed ID: 31151007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.
    Levanov AV; Isaykina OY; Amirova NK; Antipenko EE; Lunin VV
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16554-69. PubMed ID: 26077317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled OH radical production via ozone-alkene reactions for use in aerosol aging studies.
    Lambe AT; Zhang J; Sage AM; Donahue NM
    Environ Sci Technol; 2007 Apr; 41(7):2357-63. PubMed ID: 17438787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.