These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 25789976)
1. Modeling the radical chemistry in an oxidation flow reactor: radical formation and recycling, sensitivities, and the OH exposure estimation equation. Li R; Palm BB; Ortega AM; Hlywiak J; Hu W; Peng Z; Day DA; Knote C; Brune WH; de Gouw JA; Jimenez JL J Phys Chem A; 2015 May; 119(19):4418-32. PubMed ID: 25789976 [TBL] [Abstract][Full Text] [Related]
2. Photochemical aging and secondary organic aerosols generated from limonene in an oxidation flow reactor. Sbai SE; Farida B Environ Sci Pollut Res Int; 2019 Jun; 26(18):18411-18420. PubMed ID: 31049860 [TBL] [Abstract][Full Text] [Related]
3. Atmospheric photochemistry and secondary aerosol formation of urban air in Lyon, France. Sbai SE; Li C; Boreave A; Charbonnel N; Perrier S; Vernoux P; Bentayeb F; George C; Gil S J Environ Sci (China); 2021 Jan; 99():311-323. PubMed ID: 33183710 [TBL] [Abstract][Full Text] [Related]
4. Influence of ozone and radical chemistry on limonene organic aerosol production and thermal characteristics. Pathak RK; Salo K; Emanuelsson EU; Cai C; Lutz A; Hallquist AM; Hallquist M Environ Sci Technol; 2012 Nov; 46(21):11660-9. PubMed ID: 22985264 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2. Rosenfeldt EJ; Linden KG; Canonica S; von Gunten U Water Res; 2006 Dec; 40(20):3695-704. PubMed ID: 17078993 [TBL] [Abstract][Full Text] [Related]
6. Relative humidity-dependent evolution of molecular composition of α-pinene secondary organic aerosol upon heterogeneous oxidation by hydroxyl radicals. Wang W; Li C; Xiao H; Li Z; Zhao Y J Environ Sci (China); 2025 Feb; 148():210-220. PubMed ID: 39095158 [TBL] [Abstract][Full Text] [Related]
7. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor. Tkacik DS; Lambe AT; Jathar S; Li X; Presto AA; Zhao Y; Blake D; Meinardi S; Jayne JT; Croteau PL; Robinson AL Environ Sci Technol; 2014 Oct; 48(19):11235-42. PubMed ID: 25188317 [TBL] [Abstract][Full Text] [Related]
9. Modeling hydroxyl radical distribution and trialkyl phosphates oxidation in UV-H2O2 photoreactors using computational fluid dynamics. Santoro D; Raisee M; Moghaddami M; Ducoste J; Sasges M; Liberti L; Notarnicola M Environ Sci Technol; 2010 Aug; 44(16):6233-41. PubMed ID: 20704221 [TBL] [Abstract][Full Text] [Related]
10. Understanding and modeling the formation and transformation of hydrogen peroxide in water irradiated by 254 nm ultraviolet (UV) and 185 nm vacuum UV (VUV): Effects of pH and oxygen. Zhang Q; Wang L; Chen B; Chen Y; Ma J Chemosphere; 2020 Apr; 244():125483. PubMed ID: 31816545 [TBL] [Abstract][Full Text] [Related]
11. Advanced oxidation processes: mechanistic aspects. von Sonntag C Water Sci Technol; 2008; 58(5):1015-21. PubMed ID: 18824799 [TBL] [Abstract][Full Text] [Related]
12. Organic aerosol yields from α-pinene oxidation: bridging the gap between first-generation yields and aging chemistry. Henry KM; Lohaus T; Donahue NM Environ Sci Technol; 2012 Nov; 46(22):12347-54. PubMed ID: 23088520 [TBL] [Abstract][Full Text] [Related]
13. Experimental revaluation of the importance of the abstraction channel in the reactions of monoterpenes with OH radicals. Rio C; Flaud PM; Loison JC; Villenave E Chemphyschem; 2010 Dec; 11(18):3962-70. PubMed ID: 21110376 [TBL] [Abstract][Full Text] [Related]
14. Estimation of .OH radical reaction rate constants for phenol and chlorinated phenols using UV/H2O2 photo-oxidation. De AK; Chaudhuri B; Bhattacharjee S; Dutta BK J Hazard Mater; 1999 Jan; 64(1):91-104. PubMed ID: 10337395 [TBL] [Abstract][Full Text] [Related]
15. Process-Level Modeling Can Simultaneously Explain Secondary Organic Aerosol Evolution in Chambers and Flow Reactors. He Y; Lambe AT; Seinfeld JH; Cappa CD; Pierce JR; Jathar SH Environ Sci Technol; 2022 May; 56(10):6262-6273. PubMed ID: 35504037 [TBL] [Abstract][Full Text] [Related]
16. Photochemical aging of secondary organic aerosols generated from the photooxidation of polycyclic aromatic hydrocarbons in the gas-phase. Riva M; Robinson ES; Perraudin E; Donahue NM; Villenave E Environ Sci Technol; 2015 May; 49(9):5407-16. PubMed ID: 25856309 [TBL] [Abstract][Full Text] [Related]
17. Secondary organic aerosol formation from cyclohexene ozonolysis: effect of OH scavenger and the role of radical chemistry. Keywood MD; Kroll JH; Varutbangkul V; Bahreini R; Flagan RC; Seinfeld JH Environ Sci Technol; 2004 Jun; 38(12):3343-50. PubMed ID: 15260334 [TBL] [Abstract][Full Text] [Related]
18. Influence of humidity, temperature, and radicals on the formation and thermal properties of secondary organic aerosol (SOA) from ozonolysis of β-pinene. Emanuelsson EU; Watne ÅK; Lutz A; Ljungström E; Hallquist M J Phys Chem A; 2013 Oct; 117(40):10346-58. PubMed ID: 24001129 [TBL] [Abstract][Full Text] [Related]
19. Influence of relative humidity on cyclohexene SOA formation from OH photooxidation. Liu S; Tsona NT; Zhang Q; Jia L; Xu Y; Du L Chemosphere; 2019 Sep; 231():478-486. PubMed ID: 31151007 [TBL] [Abstract][Full Text] [Related]
20. Photochemical oxidation of chloride ion by ozone in acid aqueous solution. Levanov AV; Isaykina OY; Amirova NK; Antipenko EE; Lunin VV Environ Sci Pollut Res Int; 2015 Nov; 22(21):16554-69. PubMed ID: 26077317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]