These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25790094)

  • 21. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds.
    Gupta VK; Atar N; Yola ML; Üstündağ Z; Uzun L
    Water Res; 2014 Jan; 48():210-7. PubMed ID: 24112627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasonic assisted synthesis of palladium-nickel/iron oxide core-shell nanoalloys as effective catalyst for Suzuki-Miyaura and p-nitrophenol reduction reactions.
    Ghanbari N; Hoseini SJ; Bahrami M
    Ultrason Sonochem; 2017 Nov; 39():467-477. PubMed ID: 28732970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Competition between 4-Nitrophenol Reduction and BH
    Varshney S; Meyerstein D; Bar-Ziv R; Zidki T
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol.
    Nemanashi M; Meijboom R
    J Colloid Interface Sci; 2013 Jan; 389(1):260-7. PubMed ID: 23058976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-dimensional structure Au nanosheets are super active for the catalytic reduction of 4-nitrophenol.
    Zhang Y; Cui Z; Li L; Guo L; Yang S
    Phys Chem Chem Phys; 2015 Jun; 17(22):14656-61. PubMed ID: 25971868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst.
    Chang YC; Chen DH
    J Hazard Mater; 2009 Jun; 165(1-3):664-9. PubMed ID: 19022566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sonogashira couplings on the surface of montmorillonite-supported Pd/Cu nanoalloys.
    Xu W; Sun H; Yu B; Zhang G; Zhang W; Gao Z
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20261-8. PubMed ID: 25315209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spherical Polyelectrolyte Brushes as Templates to Prepare Hollow Silica Spheres Encapsulating Metal Nanoparticles.
    Yang Q; Li L; Zhao F; Wang Y; Ye Z; Hua C; Liu Z; Bohinc K; Guo X
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32326263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-pot synthesis of carbon-supported dendritic Pd-Au nanoalloys for electrocatalytic ethanol oxidation.
    Kang SW; Lee YW; Kim M; Hong JW; Han SW
    Chem Asian J; 2011 Mar; 6(3):909-13. PubMed ID: 21140400
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of the synthesis of Pd-Au nanoalloys confined in mesoporous carbonaceous materials.
    Martinez de Yuso A; Maetz A; Oumellal Y; Zlotea C; Le Meins JM; Matei Ghimbeu C
    J Colloid Interface Sci; 2017 Nov; 505():410-420. PubMed ID: 28624744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The bifurcation point of the oxygen reduction reaction on Au-Pd nanoalloys.
    Staszak-Jirkovský J; Ahlberg E; Panas I; Schiffrin DJ
    Faraday Discuss; 2016 Jul; 188():257-78. PubMed ID: 27089504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys.
    Amendola V; Scaramuzza S; Agnoli S; Polizzi S; Meneghetti M
    Nanoscale; 2014; 6(3):1423-33. PubMed ID: 24309909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles.
    Hosseinkhani B; Søbjerg LS; Rotaru AE; Emtiazi G; Skrydstrup T; Meyer RL
    Biotechnol Bioeng; 2012 Jan; 109(1):45-52. PubMed ID: 21830201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production.
    Jirkovský JS; Panas I; Ahlberg E; Halasa M; Romani S; Schiffrin DJ
    J Am Chem Soc; 2011 Dec; 133(48):19432-41. PubMed ID: 22023652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol.
    Narayanan KB; Sakthivel N
    J Hazard Mater; 2011 May; 189(1-2):519-25. PubMed ID: 21420237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic investigation for the catalytic reduction of nitrophenol using ionic liquid stabilized gold nanoparticles.
    Thawarkar SR; Thombare B; Munde BS; Khupse ND
    RSC Adv; 2018 Nov; 8(67):38384-38390. PubMed ID: 35559095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK; Kundu S; Patra A
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural Rearrangement of Au-Pd Nanoparticles under Reaction Conditions: An ab Initio Molecular Dynamics Study.
    Xu CQ; Lee MS; Wang YG; Cantu DC; Li J; Glezakou VA; Rousseau R
    ACS Nano; 2017 Feb; 11(2):1649-1658. PubMed ID: 28121422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction.
    Saha S; Pal A; Kundu S; Basu S; Pal T
    Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic evidence for a non-Langmuir-Hinshelwood surface reaction: H/D exchange over Pd nanoparticles and Pd(111).
    Savara A; Ludwig W; Schauermann S
    Chemphyschem; 2013 Jun; 14(8):1686-95. PubMed ID: 23585235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.