These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 25790119)
1. Atom-resolved analysis of an ionic KBr(001) crystal surface covered with a thin water layer by frequency modulation atomic force microscopy. Arai T; Koshioka M; Abe K; Tomitori M; Kokawa R; Ohta M; Yamada H; Kobayashi K; Oyabu N Langmuir; 2015 Apr; 31(13):3876-83. PubMed ID: 25790119 [TBL] [Abstract][Full Text] [Related]
2. Visualization of hydration layers on muscovite mica in aqueous solution by frequency-modulation atomic force microscopy. Kobayashi K; Oyabu N; Kimura K; Ido S; Suzuki K; Imai T; Tagami K; Tsukada M; Yamada H J Chem Phys; 2013 May; 138(18):184704. PubMed ID: 23676061 [TBL] [Abstract][Full Text] [Related]
3. Soft-contact imaging in liquid with frequency-modulation torsion resonance mode atomic force microscopy. Yang CW; Hwang IS Nanotechnology; 2010 Feb; 21(6):065710. PubMed ID: 20057020 [TBL] [Abstract][Full Text] [Related]
4. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy. Fukuma T Microscopy (Oxf); 2020 Dec; 69(6):340-349. PubMed ID: 32780817 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid. Miyazawa K; Izumi H; Watanabe-Nakayama T; Asakawa H; Fukuma T Nanotechnology; 2015 Mar; 26(10):105707. PubMed ID: 25697199 [TBL] [Abstract][Full Text] [Related]
6. Constant tip-surface distance with atomic force microscopy via quality factor feedback. Fan L; Potter D; Sulchek T Rev Sci Instrum; 2012 Feb; 83(2):023706. PubMed ID: 22380098 [TBL] [Abstract][Full Text] [Related]
7. Atomic-resolution imaging in liquid by frequency modulation atomic force microscopy using small cantilevers with megahertz-order resonance frequencies. Fukuma T; Onishi K; Kobayashi N; Matsuki A; Asakawa H Nanotechnology; 2012 Apr; 23(13):135706. PubMed ID: 22421199 [TBL] [Abstract][Full Text] [Related]
8. FM-AFM constant height imaging and force curves: high resolution study of DNA-tip interactions. Cerreta A; Vobornik D; Di Santo G; Tobenas S; Alonso-Sarduy L; Adamcik J; Dietler G J Mol Recognit; 2012 Sep; 25(9):486-93. PubMed ID: 22899592 [TBL] [Abstract][Full Text] [Related]
9. Molecular Dynamics Simulation of Atomic Force Microscopy at the Water-Muscovite Interface: Hydration Layer Structure and Force Analysis. Kobayashi K; Liang Y; Amano K; Murata S; Matsuoka T; Takahashi S; Nishi N; Sakka T Langmuir; 2016 Apr; 32(15):3608-16. PubMed ID: 27018633 [TBL] [Abstract][Full Text] [Related]
10. Analyzing the Effect of Capillary Force on Vibrational Performance of the Cantilever of an Atomic Force Microscope in Tapping Mode with Double Piezoelectric Layers in an Air Environment. Nahavandi A; Korayem MH Microsc Microanal; 2015 Oct; 21(5):1195-206. PubMed ID: 26324257 [TBL] [Abstract][Full Text] [Related]
11. Frequency noise in frequency modulation atomic force microscopy. Kobayashi K; Yamada H; Matsushige K Rev Sci Instrum; 2009 Apr; 80(4):043708. PubMed ID: 19405667 [TBL] [Abstract][Full Text] [Related]
12. Reduction of frequency noise and frequency shift by phase shifting elements in frequency modulation atomic force microscopy. Kobayashi K; Yamada H; Matsushige K Rev Sci Instrum; 2011 Mar; 82(3):033702. PubMed ID: 21456746 [TBL] [Abstract][Full Text] [Related]
14. Wideband phase-locked loop circuit with real-time phase correction for frequency modulation atomic force microscopy. Fukuma T; Yoshioka S; Asakawa H Rev Sci Instrum; 2011 Jul; 82(7):073707. PubMed ID: 21806189 [TBL] [Abstract][Full Text] [Related]
15. The qPlus sensor, a powerful core for the atomic force microscope. Giessibl FJ Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191 [TBL] [Abstract][Full Text] [Related]
16. Atomic Resolution of Calcium and Oxygen Sublattices of Calcite in Ambient Conditions by Atomic Force Microscopy Using qPlus Sensors with Sapphire Tips. Wastl DS; Judmann M; Weymouth AJ; Giessibl FJ ACS Nano; 2015; 9(4):3858-65. PubMed ID: 25816927 [TBL] [Abstract][Full Text] [Related]
17. Effect of solution concentration, surface bias and protonation on the dynamic response of amplitude-modulated atomic force microscopy in water. Wu Y; Gupta C; Shannon MA Langmuir; 2008 Oct; 24(19):10817-24. PubMed ID: 18763814 [TBL] [Abstract][Full Text] [Related]
18. Angled long tip to tuning fork probes for atomic force microscopy in various environments. Higuchi S; Kuramochi H; Kubo O; Masuda S; Shingaya Y; Aono M; Nakayama T Rev Sci Instrum; 2011 Apr; 82(4):043701. PubMed ID: 21529007 [TBL] [Abstract][Full Text] [Related]
19. Spatial horizons in amplitude and frequency modulation atomic force microscopy. Font J; Santos S; Barcons V; Thomson NH; Verdaguer A; Chiesa M Nanoscale; 2012 Apr; 4(7):2463-9. PubMed ID: 22374226 [TBL] [Abstract][Full Text] [Related]
20. Potential-dependent structures investigated at the perchloric acid solution/iodine modified Au(111) interface by electrochemical frequency-modulation atomic force microscopy. Utsunomiya T; Tatsumi S; Yokota Y; Fukui K Phys Chem Chem Phys; 2015 May; 17(19):12616-22. PubMed ID: 25903496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]