These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 25790178)
1. Proton-coupled electron transfer dynamics in the catalytic mechanism of a [NiFe]-hydrogenase. Greene BL; Wu CH; McTernan PM; Adams MW; Dyer RB J Am Chem Soc; 2015 Apr; 137(13):4558-66. PubMed ID: 25790178 [TBL] [Abstract][Full Text] [Related]
2. Glutamate Gated Proton-Coupled Electron Transfer Activity of a [NiFe]-Hydrogenase. Greene BL; Vansuch GE; Wu CH; Adams MW; Dyer RB J Am Chem Soc; 2016 Oct; 138(39):13013-13021. PubMed ID: 27617712 [TBL] [Abstract][Full Text] [Related]
3. Applications of Photogating and Time Resolved Spectroscopy to Mechanistic Studies of Hydrogenases. Greene BL; Vansuch GE; Chica BC; Adams MWW; Dyer RB Acc Chem Res; 2017 Nov; 50(11):2718-2726. PubMed ID: 29083854 [TBL] [Abstract][Full Text] [Related]
4. Proton Inventory and Dynamics in the Nia-S to Nia-C Transition of a [NiFe] Hydrogenase. Greene BL; Wu CH; Vansuch GE; Adams MW; Dyer RB Biochemistry; 2016 Mar; 55(12):1813-25. PubMed ID: 26956769 [TBL] [Abstract][Full Text] [Related]
5. Light-Induced Electron Transfer in a [NiFe] Hydrogenase Opens a Photochemical Shortcut for Catalytic Dihydrogen Cleavage. Karafoulidi-Retsou C; Lorent C; Katz S; Rippers Y; Matsuura H; Higuchi Y; Zebger I; Horch M Angew Chem Int Ed Engl; 2024 Oct; 63(43):e202409065. PubMed ID: 39054251 [TBL] [Abstract][Full Text] [Related]
6. Catalytic hydrogen production by a Ni-Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step. Canaguier S; Fourmond V; Perotto CU; Fize J; Pécaut J; Fontecave M; Field MJ; Artero V Chem Commun (Camb); 2013 Jun; 49(44):5004-6. PubMed ID: 23612503 [TBL] [Abstract][Full Text] [Related]
7. Proton Transfer Mechanisms in Bimetallic Hydrogenases. Tai H; Hirota S; Stripp ST Acc Chem Res; 2021 Jan; 54(1):232-241. PubMed ID: 33326230 [TBL] [Abstract][Full Text] [Related]
8. Structural Determinants of the Catalytic Ni T Waffo AF; Lorent C; Katz S; Schoknecht J; Lenz O; Zebger I; Caserta G J Am Chem Soc; 2023 Jun; 145(25):13674-13685. PubMed ID: 37328284 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic Principles of Hydrogen Evolution in the Membrane-Bound Hydrogenase. Sirohiwal A; Gamiz-Hernandez AP; Kaila VRI J Am Chem Soc; 2024 Jul; 146(26):18019-18031. PubMed ID: 38888987 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic Exploitation of a Self-Repairing, Blocked Proton Transfer Pathway in an O Evans RM; Ash PA; Beaton SE; Brooke EJ; Vincent KA; Carr SB; Armstrong FA J Am Chem Soc; 2018 Aug; 140(32):10208-10220. PubMed ID: 30070475 [TBL] [Abstract][Full Text] [Related]
12. Discovery of Dark pH-Dependent H(+) Migration in a [NiFe]-Hydrogenase and Its Mechanistic Relevance: Mobilizing the Hydrido Ligand of the Ni-C Intermediate. Murphy BJ; Hidalgo R; Roessler MM; Evans RM; Ash PA; Myers WK; Vincent KA; Armstrong FA J Am Chem Soc; 2015 Jul; 137(26):8484-9. PubMed ID: 26103582 [TBL] [Abstract][Full Text] [Related]
13. Multiscale simulations give insight into the hydrogen in and out pathways of [NiFe]-hydrogenases from Aquifex aeolicus and Desulfovibrio fructosovorans. Oteri F; Baaden M; Lojou E; Sacquin-Mora S J Phys Chem B; 2014 Dec; 118(48):13800-11. PubMed ID: 25399809 [TBL] [Abstract][Full Text] [Related]
14. Mechanism and Application of the Catalytic Reaction of [NiFe] Hydrogenase: Recent Developments. Tai H; Hirota S Chembiochem; 2020 Jun; 21(11):1573-1581. PubMed ID: 32180334 [TBL] [Abstract][Full Text] [Related]
15. Proton Transfer Pathways between Active Sites and Proximal Clusters in the Membrane-Bound [NiFe] Hydrogenase. Tombolelli D; Mroginski MA J Phys Chem B; 2019 Apr; 123(16):3409-3420. PubMed ID: 30931567 [TBL] [Abstract][Full Text] [Related]
16. [NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions. Shafaat HS; Rüdiger O; Ogata H; Lubitz W Biochim Biophys Acta; 2013; 1827(8-9):986-1002. PubMed ID: 23399489 [TBL] [Abstract][Full Text] [Related]
17. Replacing a Cysteine Ligand by Selenocysteine in a [NiFe]-Hydrogenase Unlocks Hydrogen Production Activity and Addresses the Role of Concerted Proton-Coupled Electron Transfer in Electrocatalytic Reversibility. Evans RM; Krahn N; Weiss J; Vincent KA; Söll D; Armstrong FA J Am Chem Soc; 2024 Jun; 146(25):16971-16976. PubMed ID: 38747098 [TBL] [Abstract][Full Text] [Related]
18. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation. Wang N; Wang M; Chen L; Sun L Dalton Trans; 2013 Sep; 42(34):12059-71. PubMed ID: 23846321 [TBL] [Abstract][Full Text] [Related]
19. Proton transport pathways in [NiFe]-hydrogenase. Sumner I; Voth GA J Phys Chem B; 2012 Mar; 116(9):2917-26. PubMed ID: 22309090 [TBL] [Abstract][Full Text] [Related]
20. H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. Lenz O; Ludwig M; Schubert T; Bürstel I; Ganskow S; Goris T; Schwarze A; Friedrich B Chemphyschem; 2010 Apr; 11(6):1107-19. PubMed ID: 20186906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]