BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25790271)

  • 1. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines.
    Wen K; Yu S; Huang Z; Chen L; Xiao M; Yu X; Pu L
    J Am Chem Soc; 2015 Apr; 137(13):4517-24. PubMed ID: 25790271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Determination of Concentration and Enantiomeric Composition in Fluorescent Sensing.
    Pu L
    Acc Chem Res; 2017 Apr; 50(4):1032-1040. PubMed ID: 28287702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A convenient fluorescent method to simultaneously determine the enantiomeric composition and concentration of functional chiral amines.
    Huang Z; Yu S; Zhao X; Wen K; Xu Y; Yu X; Xu Y; Pu L
    Chemistry; 2014 Dec; 20(50):16458-61. PubMed ID: 25348091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Determination of Concentration and Enantiomeric Composition of Amino Acids in Aqueous Solution by Using a Tetrabromobinaphthyl Dialdehyde Probe.
    Iqbal S; Yu S; Jiang L; Wang X; Chen Y; Wang Y; Yu X; Pu L
    Chemistry; 2019 Jul; 25(42):9967-9972. PubMed ID: 31056773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous determination of both the enantiomeric composition and concentration of a chiral substrate with one fluorescent sensor.
    Yu S; Plunkett W; Kim M; Pu L
    J Am Chem Soc; 2012 Dec; 134(50):20282-5. PubMed ID: 23214478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Highly Fluorinated Chiral Aldehyde for Enantioselective Fluorescent Recognition in a Biphasic System.
    Wang C; Wu X; Pu L
    Chemistry; 2017 Aug; 23(45):10749-10752. PubMed ID: 28675621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiquantitative Visual Chiral Assay with a Pseudoenantiomeric Fluorescent Sensor Pair.
    Chen Y; Zhao F; Tian J; Jiang L; Lu K; Jiang Y; Li H; Yu S; Yu X; Pu L
    J Org Chem; 2021 Jul; 86(14):9603-9609. PubMed ID: 34165295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism.
    Jo HH; Lin CY; Anslyn EV
    Acc Chem Res; 2014 Jul; 47(7):2212-21. PubMed ID: 24892802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Enantioselective Fluorescent Recognition of Both Unfunctionalized and Functionalized Chiral Amines by a Facile Amide Formation from a Perfluoroalkyl Ketone.
    Wang C; Anbaei P; Pu L
    Chemistry; 2016 May; 22(21):7255-61. PubMed ID: 27061205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conjugated polymer-enhanced enantioselectivity in fluorescent sensing.
    Zhang X; Wang C; Wang P; Du J; Zhang G; Pu L
    Chem Sci; 2016 Jun; 7(6):3614-3620. PubMed ID: 29997853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation of One Fluorescent Probe at Two Different Wavelengths to Determine the Concentration and Enantiomeric Composition of Amino Acids.
    Wang Q; Wu X; Pu L
    Org Lett; 2019 Nov; 21(22):9036-9039. PubMed ID: 31663766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudoenantiomeric fluorescent sensors in a chiral assay.
    Yu S; Pu L
    J Am Chem Soc; 2010 Dec; 132(50):17698-700. PubMed ID: 21121601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular recognition of aliphatic diamines by 3,3'-di(trifluoroacetyl)-1,1'-bi-2-naphthol.
    Yu S; Plunkett W; Kim M; Wu E; Sabat M; Pu L
    J Org Chem; 2013 Dec; 78(24):12671-80. PubMed ID: 24283254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One Molecular Probe with Opposite Enantioselective Fluorescence Enhancement at Two Distinct Emissions.
    Mao Y; Thomae E; Davis S; Wang C; Li Y; Pu L
    Org Lett; 2023 Mar; 25(12):2157-2161. PubMed ID: 36940095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances of BINOL-based sensors for enantioselective fluorescence recognition.
    Yu F; Chen Y; Jiang H; Wang X
    Analyst; 2020 Oct; 145(21):6769-6812. PubMed ID: 32960189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence recognition of chiral amino alcohols by using a novel ionic liquid sensor.
    Cai P; Wu D; Zhao X; Pan Y
    Analyst; 2017 Aug; 142(16):2961-2966. PubMed ID: 28726877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chirality sensing of amines, diamines, amino acids, amino alcohols, and α-hydroxy acids with a single probe.
    Bentley KW; Nam YG; Murphy JM; Wolf C
    J Am Chem Soc; 2013 Dec; 135(48):18052-5. PubMed ID: 24261969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective fluorescent recognition in the fluorous phase: enhanced reactivity and expanded chiral recognition.
    Wang C; Wu E; Wu X; Xu X; Zhang G; Pu L
    J Am Chem Soc; 2015 Mar; 137(11):3747-50. PubMed ID: 25761050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free Amino Acid Recognition: A Bisbinaphthyl-Based Fluorescent Probe with High Enantioselectivity.
    Zhu YY; Wu XD; Gu SX; Pu L
    J Am Chem Soc; 2019 Jan; 141(1):175-181. PubMed ID: 30525565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.