These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 25791004)

  • 1. Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent.
    del Rio B; Ladero V; Redruello B; Linares DM; Fernández M; Martín MC; Alvarez MA
    Food Microbiol; 2015 Jun; 48():163-70. PubMed ID: 25791004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.
    Linares DM; del Río B; Ladero V; Redruello B; Martín MC; Fernández M; Alvarez MA
    Int J Food Microbiol; 2013 Jul; 165(1):43-50. PubMed ID: 23688550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Putrescine production by Lactococcus lactis subsp. cremoris CECT 8666 is reduced by NaCl via a decrease in bacterial growth and the repression of the genes involved in putrescine production.
    Del Rio B; Redruello B; Ladero V; Fernandez M; Martin MC; Alvarez MA
    Int J Food Microbiol; 2016 Sep; 232():1-6. PubMed ID: 27218410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Putrescine production via the agmatine deiminase pathway increases the growth of Lactococcus lactis and causes the alkalinization of the culture medium.
    del Rio B; Linares DM; Ladero V; Redruello B; Fernández M; Martin MC; Alvarez MA
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):897-905. PubMed ID: 25341400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine.
    Del Rio B; Redruello B; Martin MC; Fernandez M; de Jong A; Kuipers OP; Ladero V; Alvarez MA
    Genom Data; 2016 Mar; 7():112-4. PubMed ID: 26981381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666.
    Del Rio B; Linares DM; Redruello B; Martin MC; Fernandez M; de Jong A; Kuipers OP; Ladero V; Alvarez MA
    Genom Data; 2015 Dec; 6():228-30. PubMed ID: 26697381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequencing and transcriptional analysis of the biosynthesis gene cluster of putrescine-producing Lactococcus lactis.
    Ladero V; Rattray FP; Mayo B; Martín MC; Fernández M; Alvarez MA
    Appl Environ Microbiol; 2011 Sep; 77(18):6409-18. PubMed ID: 21803900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Putrescine biosynthesis in Lactococcus lactis is transcriptionally activated at acidic pH and counteracts acidification of the cytosol.
    Del Rio B; Linares D; Ladero V; Redruello B; Fernandez M; Martin MC; Alvarez MA
    Int J Food Microbiol; 2016 Nov; 236():83-9. PubMed ID: 27454783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogenic amine production by Lactococcus lactis subsp. cremoris strains in the model system of Dutch-type cheese.
    Flasarová R; Pachlová V; Buňková L; Menšíková A; Georgová N; Dráb V; Buňka F
    Food Chem; 2016 Mar; 194():68-75. PubMed ID: 26471528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AguR, a Transmembrane Transcription Activator of the Putrescine Biosynthesis Operon in Lactococcus lactis, Acts in Response to the Agmatine Concentration.
    Linares DM; Del Rio B; Redruello B; Ladero V; Martin MC; de Jong A; Kuipers OP; Fernandez M; Alvarez MA
    Appl Environ Microbiol; 2015 Sep; 81(18):6145-57. PubMed ID: 26116671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of starter and nonstarter on the formation of biogenic amine in goat cheese during ripening.
    Novella-Rodríguez S; Veciana-Nogués MT; Roig-Sagués AX; Trujillo-Mesa AJ; Vidal-Carou MC
    J Dairy Sci; 2002 Oct; 85(10):2471-8. PubMed ID: 12416798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of autochthonous starter cultures on the biogenic amine content of ewe's milk cheese throughout ripening.
    Renes E; Diezhandino I; Fernández D; Ferrazza RE; Tornadijo ME; Fresno JM
    Food Microbiol; 2014 Dec; 44():271-7. PubMed ID: 25084673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Varying influence of the autolysin, N-acetyl muramidase, and the cell envelope proteinase on the rate of autolysis of six commercial Lactococcus lactis cheese starter bacteria grown in milk.
    Govindasamy-Lucey S; Gopal PK; Sullivan PA; Pillidge CJ
    J Dairy Res; 2000 Nov; 67(4):585-96. PubMed ID: 11131071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk.
    Alegría A; Delgado S; Roces C; López B; Mayo B
    Int J Food Microbiol; 2010 Sep; 143(1-2):61-6. PubMed ID: 20708289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional responses in Lactococcus lactis subsp. cremoris to the changes in oxygen and redox potential during milk acidification.
    Larsen N; Brøsted Werner B; Jespersen L
    Lett Appl Microbiol; 2016 Aug; 63(2):117-23. PubMed ID: 27234372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of aroma generation of Lactococcus lactis with an electronic nose and sensory analysis.
    Gutiérrez-Méndez N; Vallejo-Cordoba B; González-Córdova AF; Nevárez-Moorillón GV; Rivera-Chavira B
    J Dairy Sci; 2008 Jan; 91(1):49-57. PubMed ID: 18096924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance to bacteriocin Lcn972 improves oxygen tolerance of Lactococcus lactis IPLA947 without compromising its performance as a dairy starter.
    López-González MJ; Campelo AB; Picon A; Rodríguez A; Martínez B
    BMC Microbiol; 2018 Jul; 18(1):76. PubMed ID: 30029618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of lactose, NaCl and an aero/anaerobic environment on the tyrosine decarboxylase activity of Lactococcus lactis subsp. cremoris and Lactococcus lactis subsp. lactis.
    Buňková L; Buňka F; Pollaková E; Podešvová T; Dráb V
    Int J Food Microbiol; 2011 May; 147(2):112-9. PubMed ID: 21496934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Flavor-Forming Starter
    Lee HW; Kim IS; Kil BJ; Seo E; Park H; Ham JS; Choi YJ; Huh CS
    J Microbiol Biotechnol; 2020 Sep; 30(9):1404-1411. PubMed ID: 32522956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription profiling of interactions between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 during Cheddar cheese simulation.
    Desfossés-Foucault É; LaPointe G; Roy D
    Int J Food Microbiol; 2014 May; 178():76-86. PubMed ID: 24674930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.