BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 25791004)

  • 1. Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent.
    del Rio B; Ladero V; Redruello B; Linares DM; Fernández M; Martín MC; Alvarez MA
    Food Microbiol; 2015 Jun; 48():163-70. PubMed ID: 25791004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.
    Linares DM; del Río B; Ladero V; Redruello B; Martín MC; Fernández M; Alvarez MA
    Int J Food Microbiol; 2013 Jul; 165(1):43-50. PubMed ID: 23688550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Putrescine production by Lactococcus lactis subsp. cremoris CECT 8666 is reduced by NaCl via a decrease in bacterial growth and the repression of the genes involved in putrescine production.
    Del Rio B; Redruello B; Ladero V; Fernandez M; Martin MC; Alvarez MA
    Int J Food Microbiol; 2016 Sep; 232():1-6. PubMed ID: 27218410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Putrescine production via the agmatine deiminase pathway increases the growth of Lactococcus lactis and causes the alkalinization of the culture medium.
    del Rio B; Linares DM; Ladero V; Redruello B; Fernández M; Martin MC; Alvarez MA
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):897-905. PubMed ID: 25341400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine.
    Del Rio B; Redruello B; Martin MC; Fernandez M; de Jong A; Kuipers OP; Ladero V; Alvarez MA
    Genom Data; 2016 Mar; 7():112-4. PubMed ID: 26981381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666.
    Del Rio B; Linares DM; Redruello B; Martin MC; Fernandez M; de Jong A; Kuipers OP; Ladero V; Alvarez MA
    Genom Data; 2015 Dec; 6():228-30. PubMed ID: 26697381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequencing and transcriptional analysis of the biosynthesis gene cluster of putrescine-producing Lactococcus lactis.
    Ladero V; Rattray FP; Mayo B; Martín MC; Fernández M; Alvarez MA
    Appl Environ Microbiol; 2011 Sep; 77(18):6409-18. PubMed ID: 21803900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Putrescine biosynthesis in Lactococcus lactis is transcriptionally activated at acidic pH and counteracts acidification of the cytosol.
    Del Rio B; Linares D; Ladero V; Redruello B; Fernandez M; Martin MC; Alvarez MA
    Int J Food Microbiol; 2016 Nov; 236():83-9. PubMed ID: 27454783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogenic amine production by Lactococcus lactis subsp. cremoris strains in the model system of Dutch-type cheese.
    Flasarová R; Pachlová V; Buňková L; Menšíková A; Georgová N; Dráb V; Buňka F
    Food Chem; 2016 Mar; 194():68-75. PubMed ID: 26471528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AguR, a Transmembrane Transcription Activator of the Putrescine Biosynthesis Operon in Lactococcus lactis, Acts in Response to the Agmatine Concentration.
    Linares DM; Del Rio B; Redruello B; Ladero V; Martin MC; de Jong A; Kuipers OP; Fernandez M; Alvarez MA
    Appl Environ Microbiol; 2015 Sep; 81(18):6145-57. PubMed ID: 26116671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of starter and nonstarter on the formation of biogenic amine in goat cheese during ripening.
    Novella-Rodríguez S; Veciana-Nogués MT; Roig-Sagués AX; Trujillo-Mesa AJ; Vidal-Carou MC
    J Dairy Sci; 2002 Oct; 85(10):2471-8. PubMed ID: 12416798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of autochthonous starter cultures on the biogenic amine content of ewe's milk cheese throughout ripening.
    Renes E; Diezhandino I; Fernández D; Ferrazza RE; Tornadijo ME; Fresno JM
    Food Microbiol; 2014 Dec; 44():271-7. PubMed ID: 25084673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Varying influence of the autolysin, N-acetyl muramidase, and the cell envelope proteinase on the rate of autolysis of six commercial Lactococcus lactis cheese starter bacteria grown in milk.
    Govindasamy-Lucey S; Gopal PK; Sullivan PA; Pillidge CJ
    J Dairy Res; 2000 Nov; 67(4):585-96. PubMed ID: 11131071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk.
    Alegría A; Delgado S; Roces C; López B; Mayo B
    Int J Food Microbiol; 2010 Sep; 143(1-2):61-6. PubMed ID: 20708289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional responses in Lactococcus lactis subsp. cremoris to the changes in oxygen and redox potential during milk acidification.
    Larsen N; Brøsted Werner B; Jespersen L
    Lett Appl Microbiol; 2016 Aug; 63(2):117-23. PubMed ID: 27234372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of aroma generation of Lactococcus lactis with an electronic nose and sensory analysis.
    Gutiérrez-Méndez N; Vallejo-Cordoba B; González-Córdova AF; Nevárez-Moorillón GV; Rivera-Chavira B
    J Dairy Sci; 2008 Jan; 91(1):49-57. PubMed ID: 18096924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance to bacteriocin Lcn972 improves oxygen tolerance of Lactococcus lactis IPLA947 without compromising its performance as a dairy starter.
    López-González MJ; Campelo AB; Picon A; Rodríguez A; Martínez B
    BMC Microbiol; 2018 Jul; 18(1):76. PubMed ID: 30029618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of lactose, NaCl and an aero/anaerobic environment on the tyrosine decarboxylase activity of Lactococcus lactis subsp. cremoris and Lactococcus lactis subsp. lactis.
    Buňková L; Buňka F; Pollaková E; Podešvová T; Dráb V
    Int J Food Microbiol; 2011 May; 147(2):112-9. PubMed ID: 21496934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Flavor-Forming Starter
    Lee HW; Kim IS; Kil BJ; Seo E; Park H; Ham JS; Choi YJ; Huh CS
    J Microbiol Biotechnol; 2020 Sep; 30(9):1404-1411. PubMed ID: 32522956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription profiling of interactions between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 during Cheddar cheese simulation.
    Desfossés-Foucault É; LaPointe G; Roy D
    Int J Food Microbiol; 2014 May; 178():76-86. PubMed ID: 24674930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.