These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Generating roots of cubic polynomials by Cardano's approach on correspondence analysis. Lestari KE; Pasaribu US; Indratno SW; Garminia H Heliyon; 2020 Jun; 6(6):e03998. PubMed ID: 32577543 [TBL] [Abstract][Full Text] [Related]
4. General form for obtaining unit disc-based generalized orthogonal moments. Zhu H; Yang Y; Zhu X; Gui Z; Shu H IEEE Trans Image Process; 2014 Dec; 23(12):5455-69. PubMed ID: 25361505 [TBL] [Abstract][Full Text] [Related]
5. Image analysis by Krawtchouk moments. Yap PT; Paramesran R; Ong SH IEEE Trans Image Process; 2003; 12(11):1367-77. PubMed ID: 18244694 [TBL] [Abstract][Full Text] [Related]
6. Leveraging Quadratic Polynomials in Python for Advanced Data Analysis. Sipakov R; Voloshkina O; Kovalova A F1000Res; 2024; 13():490. PubMed ID: 39238832 [TBL] [Abstract][Full Text] [Related]
8. The Generalized Matrix Decomposition Biplot and Its Application to Microbiome Data. Wang Y; Randolph TW; Shojaie A; Ma J mSystems; 2019 Dec; 4(6):. PubMed ID: 31848304 [TBL] [Abstract][Full Text] [Related]
9. An Algorithm for the Factorization of Split Quaternion Polynomials. Scharler DF; Schröcker HP Adv Appl Clifford Algebr; 2021; 31(3):29. PubMed ID: 34720306 [TBL] [Abstract][Full Text] [Related]
10. A BASIC program for orthogonal polynomials and retrieval of regression coefficients for original model. Tyson H; Fieldes MA Comput Programs Biomed; 1982 Oct; 15(2):151-4. PubMed ID: 6897217 [TBL] [Abstract][Full Text] [Related]
11. A Unified Methodology for Computing Accurate Quaternion Color Moments and Moment Invariants. Karakasis EG; Papakostas GA; Koulouriotis DE; Tourassis VD IEEE Trans Image Process; 2014 Feb; 23(2):596-611. PubMed ID: 24216719 [TBL] [Abstract][Full Text] [Related]
12. Residual Scaling: An Alternative to Correspondence Analysis for the Graphical Representation of Residuals from Log-Linear Models. Novak TP; Hoffman DL Multivariate Behav Res; 1990 Jul; 25(3):351-70. PubMed ID: 26761409 [TBL] [Abstract][Full Text] [Related]
13. Jaynes-Gibbs Entropic Convex Duals and Orthogonal Polynomials. Le Blanc R Entropy (Basel); 2022 May; 24(5):. PubMed ID: 35626592 [TBL] [Abstract][Full Text] [Related]
14. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture. Ye J; Gao Z; Wang S; Cheng J; Wang W; Sun W J Opt Soc Am A Opt Image Sci Vis; 2014 Oct; 31(10):2304-11. PubMed ID: 25401259 [TBL] [Abstract][Full Text] [Related]
15. Use of orthogonal polynomials with nonparametric tests. Still AW Psychol Bull; 1967 Nov; 68(5):327-9. PubMed ID: 6062587 [No Abstract] [Full Text] [Related]
17. A constructive approach for finding arbitrary roots of polynomials by neural networks. Huang DS IEEE Trans Neural Netw; 2004 Mar; 15(2):477-91. PubMed ID: 15384540 [TBL] [Abstract][Full Text] [Related]
18. Quantitative Boltzmann-Gibbs Principles via Orthogonal Polynomial Duality. Ayala M; Carinci G; Redig F J Stat Phys; 2018; 171(6):980-999. PubMed ID: 31007279 [TBL] [Abstract][Full Text] [Related]
19. Modelling age-dependent force of infection from prevalence data using fractional polynomials. Shkedy Z; Aerts M; Molenberghs G; Beutels P; Van Damme P Stat Med; 2006 May; 25(9):1577-91. PubMed ID: 16252265 [TBL] [Abstract][Full Text] [Related]
20. On the computation of recurrence coefficients for univariate orthogonal polynomials. Liu Z; Narayan A J Sci Comput; 2021 Sep; 88(3):. PubMed ID: 34483475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]