BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 25791169)

  • 1. Non-sirtuin histone deacetylases in the control of cardiac aging.
    Ferguson BS; McKinsey TA
    J Mol Cell Cardiol; 2015 Jun; 83():14-20. PubMed ID: 25791169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CaMKII exacerbates heart failure progression by activating class I HDACs.
    Zhang M; Yang X; Zimmerman RJ; Wang Q; Ross MA; Granger JM; Luczak ED; Bedja D; Jiang H; Feng N
    J Mol Cell Cardiol; 2020 Dec; 149():73-81. PubMed ID: 32971072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling.
    Demos-Davies KM; Ferguson BS; Cavasin MA; Mahaffey JH; Williams SM; Spiltoir JI; Schuetze KB; Horn TR; Chen B; Ferrara C; Scellini B; Piroddi N; Tesi C; Poggesi C; Jeong MY; McKinsey TA
    Am J Physiol Heart Circ Physiol; 2014 Jul; 307(2):H252-8. PubMed ID: 24858848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting cardiac fibroblasts to treat fibrosis of the heart: focus on HDACs.
    Schuetze KB; McKinsey TA; Long CS
    J Mol Cell Cardiol; 2014 May; 70():100-7. PubMed ID: 24631770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective inhibition of HDAC2 by magnesium valproate attenuates cardiac hypertrophy.
    Raghunathan S; Goyal RK; Patel BM
    Can J Physiol Pharmacol; 2017 Mar; 95(3):260-267. PubMed ID: 28177689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone deacetylases in cardiovascular and metabolic diseases.
    Bagchi RA; Weeks KL
    J Mol Cell Cardiol; 2019 May; 130():151-159. PubMed ID: 30978343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biology and therapeutic implications of HDACs in the heart.
    McKinsey TA
    Handb Exp Pharmacol; 2011; 206():57-78. PubMed ID: 21879446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles and targets of class I and IIa histone deacetylases in cardiac hypertrophy.
    Kee HJ; Kook H
    J Biomed Biotechnol; 2011; 2011():928326. PubMed ID: 21151616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin modifications remodel cardiac gene expression.
    Mathiyalagan P; Keating ST; Du XJ; El-Osta A
    Cardiovasc Res; 2014 Jul; 103(1):7-16. PubMed ID: 24812277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension.
    Lemon DD; Horn TR; Cavasin MA; Jeong MY; Haubold KW; Long CS; Irwin DC; McCune SA; Chung E; Leinwand LA; McKinsey TA
    J Mol Cell Cardiol; 2011 Jul; 51(1):41-50. PubMed ID: 21539845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc-dependent histone deacetylases: Potential therapeutic targets for arterial hypertension.
    Kee HJ; Kim I; Jeong MH
    Biochem Pharmacol; 2022 Aug; 202():115111. PubMed ID: 35640713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Versatility in Catalysis and Inhibition of the Class IIb Histone Deacetylases.
    Christianson DW
    Acc Chem Res; 2024 Apr; 57(8):1135-1148. PubMed ID: 38530703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of HDACs in cardiac electropathology: Therapeutic implications for atrial fibrillation.
    Brundel BJJM; Li J; Zhang D
    Biochim Biophys Acta Mol Cell Res; 2020 Mar; 1867(3):118459. PubMed ID: 30880147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy.
    Zhang CL; McKinsey TA; Chang S; Antos CL; Hill JA; Olson EN
    Cell; 2002 Aug; 110(4):479-88. PubMed ID: 12202037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone deacetylases: salesmen and customers in the post-translational modification market.
    Brandl A; Heinzel T; Krämer OH
    Biol Cell; 2009 Apr; 101(4):193-205. PubMed ID: 19207105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone Deacetylase 3 (HDAC3)-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity.
    Samant SA; Pillai VB; Sundaresan NR; Shroff SG; Gupta MP
    J Biol Chem; 2015 Jun; 290(25):15559-15569. PubMed ID: 25911107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic effects of histone deacetylase inhibitors on heart disease.
    Chun P
    Arch Pharm Res; 2020 Dec; 43(12):1276-1296. PubMed ID: 33245518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Crosstalk between Acetylation and Phosphorylation: Emerging New Roles for HDAC Inhibitors in the Heart.
    Habibian J; Ferguson BS
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30597863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoform-selective HDAC inhibitors: closing in on translational medicine for the heart.
    McKinsey TA
    J Mol Cell Cardiol; 2011 Oct; 51(4):491-6. PubMed ID: 21108947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the Deacylase and Deacetylase Activity of Zinc-Dependent HDACs.
    McClure JJ; Inks ES; Zhang C; Peterson YK; Li J; Chundru K; Lee B; Buchanan A; Miao S; Chou CJ
    ACS Chem Biol; 2017 Jun; 12(6):1644-1655. PubMed ID: 28459537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.