BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 25791169)

  • 21. Using Histone Deacetylase Inhibitors to Analyze the Relevance of HDACs for Translation.
    Hutt DM; Roth DM; Marchal C; Bouchecareilh M
    Methods Mol Biol; 2017; 1510():77-91. PubMed ID: 27761814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Erasers of histone acetylation: the histone deacetylase enzymes.
    Seto E; Yoshida M
    Cold Spring Harb Perspect Biol; 2014 Apr; 6(4):a018713. PubMed ID: 24691964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How to Distinguish Between the Activity of HDAC1-3 and HDAC6 with Western Blot.
    Beyer M; Kiweler N; Mahboobi S; Krämer OH
    Methods Mol Biol; 2017; 1510():355-364. PubMed ID: 27761834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy.
    Kong Y; Tannous P; Lu G; Berenji K; Rothermel BA; Olson EN; Hill JA
    Circulation; 2006 Jun; 113(22):2579-88. PubMed ID: 16735673
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure.
    Evans LW; Ferguson BS
    Nutrients; 2018 Aug; 10(8):. PubMed ID: 30126190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy.
    Trivedi CM; Lu MM; Wang Q; Epstein JA
    J Biol Chem; 2008 Sep; 283(39):26484-9. PubMed ID: 18625706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes.
    Ooi JY; Tuano NK; Rafehi H; Gao XM; Ziemann M; Du XJ; El-Osta A
    Epigenetics; 2015; 10(5):418-30. PubMed ID: 25941940
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heart failure: the pivotal role of histone deacetylases.
    Hewitson R; Dargan J; Collis D; Green A; Moorjani N; Ohri S; Townsend PA
    Int J Biochem Cell Biol; 2013 Feb; 45(2):448-53. PubMed ID: 23178536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs.
    Vaquero A; Sternglanz R; Reinberg D
    Oncogene; 2007 Aug; 26(37):5505-20. PubMed ID: 17694090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibitors of NAD+ dependent histone deacetylases (sirtuins).
    Neugebauer RC; Sippl W; Jung M
    Curr Pharm Des; 2008; 14(6):562-73. PubMed ID: 18336301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of acetylation of histone deacetylase 2 by p300/CBP-associated factor/histone deacetylase 5 in the development of cardiac hypertrophy.
    Eom GH; Nam YS; Oh JG; Choe N; Min HK; Yoo EK; Kang G; Nguyen VH; Min JJ; Kim JK; Lee IK; Bassel-Duby R; Olson EN; Park WJ; Kook H
    Circ Res; 2014 Mar; 114(7):1133-43. PubMed ID: 24526703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors.
    Khan N; Jeffers M; Kumar S; Hackett C; Boldog F; Khramtsov N; Qian X; Mills E; Berghs SC; Carey N; Finn PW; Collins LS; Tumber A; Ritchie JW; Jensen PB; Lichenstein HS; Sehested M
    Biochem J; 2008 Jan; 409(2):581-9. PubMed ID: 17868033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Emerging Role of HDACs: Pathology and Therapeutic Targets in Diabetes Mellitus.
    Dewanjee S; Vallamkondu J; Kalra RS; Chakraborty P; Gangopadhyay M; Sahu R; Medala V; John A; Reddy PH; De Feo V; Kandimalla R
    Cells; 2021 May; 10(6):. PubMed ID: 34071497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel Histone Deacetylase Inhibitor Modulates Cardiac Peroxisome Proliferator-Activated Receptors and Inflammatory Cytokines in Heart Failure.
    Lkhagva B; Lin YK; Kao YH; Chazo TF; Chung CC; Chen SA; Chen YJ
    Pharmacology; 2015; 96(3-4):184-91. PubMed ID: 26304494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Histone deacetylase inhibition attenuates cardiac hypertrophy and fibrosis through acetylation of mineralocorticoid receptor in spontaneously hypertensive rats.
    Kang SH; Seok YM; Song MJ; Lee HA; Kurz T; Kim I
    Mol Pharmacol; 2015 May; 87(5):782-91. PubMed ID: 25667225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Roles and post-translational regulation of cardiac class IIa histone deacetylase isoforms.
    Weeks KL; Avkiran M
    J Physiol; 2015 Apr; 593(8):1785-97. PubMed ID: 25362149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of HDAC3 prevents diabetic cardiomyopathy in OVE26 mice via epigenetic regulation of DUSP5-ERK1/2 pathway.
    Xu Z; Tong Q; Zhang Z; Wang S; Zheng Y; Liu Q; Qian LB; Chen SY; Sun J; Cai L
    Clin Sci (Lond); 2017 Aug; 131(15):1841-1857. PubMed ID: 28533215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy.
    Ferguson BS; Harrison BC; Jeong MY; Reid BG; Wempe MF; Wagner FF; Holson EB; McKinsey TA
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9806-11. PubMed ID: 23720316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The mechanism underlying histone deacetylases regulating cardiac hypertrophy].
    Ren L; Wu XS; Li YQ
    Yi Chuan; 2020 Jun; 42(6):536-547. PubMed ID: 32694112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epigenetic therapy of cancer with histone deacetylase inhibitors.
    Lakshmaiah KC; Jacob LA; Aparna S; Lokanatha D; Saldanha SC
    J Cancer Res Ther; 2014; 10(3):469-78. PubMed ID: 25313724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.