BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 25791169)

  • 41. Crebinostat: a novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity.
    Fass DM; Reis SA; Ghosh B; Hennig KM; Joseph NF; Zhao WN; Nieland TJ; Guan JS; Kuhnle CE; Tang W; Barker DD; Mazitschek R; Schreiber SL; Tsai LH; Haggarty SJ
    Neuropharmacology; 2013 Jan; 64():81-96. PubMed ID: 22771460
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anti-Fibrotic Effects of Class I HDAC Inhibitor, Mocetinostat Is Associated with IL-6/Stat3 Signaling in Ischemic Heart Failure.
    Nural-Guvener H; Zakharova L; Feehery L; Sljukic S; Gaballa M
    Int J Mol Sci; 2015 May; 16(5):11482-99. PubMed ID: 25997003
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms.
    Beier UH; Wang L; Han R; Akimova T; Liu Y; Hancock WW
    Sci Signal; 2012 Jun; 5(229):ra45. PubMed ID: 22715468
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Zinc-dependent HDACs: Non-histone Substrates and Catalytic Deacylation Beyond Deacetylation.
    Zheng W
    Mini Rev Med Chem; 2022; 22(19):2478-2485. PubMed ID: 35362374
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Small molecule inhibitors of zinc-dependent histone deacetylases.
    Wagner FF; Weїwer M; Lewis MC; Holson EB
    Neurotherapeutics; 2013 Oct; 10(4):589-604. PubMed ID: 24101253
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Targeting the epigenome: Screening bioactive compounds that regulate histone deacetylase activity.
    Godoy LD; Lucas JE; Bender AJ; Romanick SS; Ferguson BS
    Mol Nutr Food Res; 2017 Apr; 61(4):. PubMed ID: 27981795
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Posttranslational modifications of histone deacetylases: implications for cardiovascular diseases.
    Eom GH; Kook H
    Pharmacol Ther; 2014 Aug; 143(2):168-80. PubMed ID: 24594235
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isoform-selective histone deacetylase inhibitors.
    Itoh Y; Suzuki T; Miyata N
    Curr Pharm Des; 2008; 14(6):529-44. PubMed ID: 18336298
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of histone deacetylases in bone development and skeletal disorders.
    Wang JS; Yoon SH; Wein MN
    Bone; 2021 Feb; 143():115606. PubMed ID: 32829038
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The inhibitory effects of class I histone deacetylases on hippocampal neuroinflammatory regulation in aging mice with postoperative cognitive dysfunction.
    Yang CX; Bao F; Zhong J; Zhang L; Deng LB; Sha Q; Jiang H
    Eur Rev Med Pharmacol Sci; 2020 Oct; 24(19):10194-10202. PubMed ID: 33090427
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Targeting histone deacetylases for heart diseases.
    Jin G; Wang K; Zhao Y; Yuan S; He Z; Zhang J
    Bioorg Chem; 2023 Sep; 138():106601. PubMed ID: 37224740
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of dietary histone deacetylases (HDACs) inhibitors in health and disease.
    Bassett SA; Barnett MP
    Nutrients; 2014 Oct; 6(10):4273-301. PubMed ID: 25322459
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of NAD+ dependent histone deacetylases (sirtuins) in ageing.
    Trapp J; Jung M
    Curr Drug Targets; 2006 Nov; 7(11):1553-60. PubMed ID: 17100594
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Emodin and emodin-rich rhubarb inhibits histone deacetylase (HDAC) activity and cardiac myocyte hypertrophy.
    Evans LW; Bender A; Burnett L; Godoy L; Shen Y; Staten D; Zhou T; Angermann JE; Ferguson BS
    J Nutr Biochem; 2020 May; 79():108339. PubMed ID: 32007664
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Class I HDACs control a JIP1-dependent pathway for kinesin-microtubule binding in cardiomyocytes.
    Blakeslee WW; Lin YH; Stratton MS; Tatman PD; Hu T; Ferguson BS; McKinsey TA
    J Mol Cell Cardiol; 2017 Nov; 112():74-82. PubMed ID: 28886967
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo.
    Weichert W; Röske A; Niesporek S; Noske A; Buckendahl AC; Dietel M; Gekeler V; Boehm M; Beckers T; Denkert C
    Clin Cancer Res; 2008 Mar; 14(6):1669-77. PubMed ID: 18347167
    [TBL] [Abstract][Full Text] [Related]  

  • 57. HDAC-dependent ventricular remodeling.
    Xie M; Hill JA
    Trends Cardiovasc Med; 2013 Aug; 23(6):229-35. PubMed ID: 23499301
    [TBL] [Abstract][Full Text] [Related]  

  • 58. HDACs Regulate miR-133a Expression in Pressure Overload-Induced Cardiac Fibrosis.
    Renaud L; Harris LG; Mani SK; Kasiganesan H; Chou JC; Baicu CF; Van Laer A; Akerman AW; Stroud RE; Jones JA; Zile MR; Menick DR
    Circ Heart Fail; 2015 Nov; 8(6):1094-104. PubMed ID: 26371176
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of redox modulation of class II histone deacetylases in mediating pathological cardiac hypertrophy.
    Oka S; Ago T; Kitazono T; Zablocki D; Sadoshima J
    J Mol Med (Berl); 2009 Aug; 87(8):785-91. PubMed ID: 19424677
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Therapeutic potential for HDAC inhibitors in the heart.
    McKinsey TA
    Annu Rev Pharmacol Toxicol; 2012; 52():303-19. PubMed ID: 21942627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.