BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 25791283)

  • 1. The role of residence times in two-patch dengue transmission dynamics and optimal strategies.
    Lee S; Castillo-Chavez C
    J Theor Biol; 2015 Jun; 374():152-64. PubMed ID: 25791283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia.
    Barrios E; Lee S; Vasilieva O
    J Theor Biol; 2018 Sep; 453():14-39. PubMed ID: 29775680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of optimal strategies in a two-patch dengue transmission model with seasonality.
    Kim JE; Lee H; Lee CH; Lee S
    PLoS One; 2017; 12(3):e0173673. PubMed ID: 28301523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optimal control problem arising from a dengue disease transmission model.
    Aldila D; Götz T; Soewono E
    Math Biosci; 2013 Mar; 242(1):9-16. PubMed ID: 23274179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Impact of Temperature and Human Movement on the Persistence of Dengue Disease.
    Phaijoo GR; Gurung DB
    Comput Math Methods Med; 2017; 2017():1747134. PubMed ID: 29312458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased efficiency in the second-hand tire trade provides opportunity for dengue control.
    Pliego Pliego E; Velázquez-Castro J; Eichhorn MP; Fraguela Collar A
    J Theor Biol; 2018 Jan; 437():126-136. PubMed ID: 29079324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal control of a multi-patch Dengue model under the influence of Wolbachia bacterium.
    Bock W; Jayathunga Y
    Math Biosci; 2019 Sep; 315():108219. PubMed ID: 31229468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a geographic information system for defining spatial risk for dengue transmission in Bangladesh: role for Aedes albopictus in an urban outbreak.
    Ali M; Wagatsuma Y; Emch M; Breiman RF
    Am J Trop Med Hyg; 2003 Dec; 69(6):634-40. PubMed ID: 14740881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Impact of changes in the environment on vector-transmitted diseases].
    Mouchet J; Carnevale P
    Sante; 1997; 7(4):263-9. PubMed ID: 9410453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito.
    Otero M; Solari HG
    Math Biosci; 2010 Jan; 223(1):32-46. PubMed ID: 19861133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Classical dengue transmission dynamics involving mechanical control and prophylaxis].
    Toro-Zapata HD; Restrepo LD; Vergaño-Salazar JG; Muñoz-Loaiza A
    Rev Salud Publica (Bogota); 2010 Dec; 12(6):1020-32. PubMed ID: 22030689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal control strategies for dengue transmission in pakistan.
    Agusto FB; Khan MA
    Math Biosci; 2018 Nov; 305():102-121. PubMed ID: 30218686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings.
    Yang HM; Macoris Mde L; Galvani KC; Andrighetti MT
    Biosystems; 2011 Mar; 103(3):360-71. PubMed ID: 21093536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative analysis of the relative efficacy of vector-control strategies against dengue fever.
    Amaku M; Coutinho FA; Raimundo SM; Lopez LF; Nascimento Burattini M; Massad E
    Bull Math Biol; 2014 Mar; 76(3):697-717. PubMed ID: 24619807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of a Dengue Model with Vertical Transmission and Application to the 2014 Dengue Outbreak in Guangdong Province, China.
    Zou L; Chen J; Feng X; Ruan S
    Bull Math Biol; 2018 Oct; 80(10):2633-2651. PubMed ID: 30083966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of R0 from the initial phase of an outbreak of a vector-borne infection.
    Massad E; Coutinho FA; Burattini MN; Amaku M
    Trop Med Int Health; 2010 Jan; 15(1):120-6. PubMed ID: 19891761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing potential countermeasures against the dengue epidemic in non-tropical urban cities.
    Masui H; Kakitani I; Ujiyama S; Hashidate K; Shiono M; Kudo K
    Theor Biol Med Model; 2016 Apr; 13():12. PubMed ID: 27072122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue.
    Coutinho FA; Burattini MN; Lopez LF; Massad E
    Bull Math Biol; 2006 Nov; 68(8):2263-82. PubMed ID: 16952019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early determination of the reproductive number for vector-borne diseases: the case of dengue in Brazil.
    Favier C; Degallier N; Rosa-Freitas MG; Boulanger JP; Costa Lima JR; Luitgards-Moura JF; Menkès CE; Mondet B; Oliveira C; Weimann ET; Tsouris P
    Trop Med Int Health; 2006 Mar; 11(3):332-40. PubMed ID: 16553913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling dengue outbreaks.
    Otero M; Barmak DH; Dorso CO; Solari HG; Natiello MA
    Math Biosci; 2011 Aug; 232(2):87-95. PubMed ID: 21570411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.