BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 25791356)

  • 1. RhoA/mDia-1/profilin-1 signaling targets microvascular endothelial dysfunction in diabetic retinopathy.
    Lu Q; Lu L; Chen W; Chen H; Xu X; Zheng Z
    Graefes Arch Clin Exp Ophthalmol; 2015 May; 253(5):669-80. PubMed ID: 25791356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of RhoA/ROCK1 signaling pathway in hyperglycemia-induced microvascular endothelial dysfunction in diabetic retinopathy.
    Lu QY; Chen W; Lu L; Zheng Z; Xu X
    Int J Clin Exp Pathol; 2014; 7(10):7268-77. PubMed ID: 25400825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TGR5 receptor activation attenuates diabetic retinopathy through suppression of RhoA/ROCK signaling.
    Zhu L; Wang W; Xie TH; Zou J; Nie X; Wang X; Zhang MY; Wang ZY; Gu S; Zhuang M; Tan J; Shen C; Dai Y; Yang X; Yao Y; Wei TT
    FASEB J; 2020 Mar; 34(3):4189-4203. PubMed ID: 31957105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ANGPTL-4 induces diabetic retinal inflammation by activating Profilin-1.
    Lu Q; Lu P; Chen W; Lu L; Zheng Z
    Exp Eye Res; 2018 Jan; 166():140-150. PubMed ID: 29031854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Cell biology of intraocular vascular diseases].
    Ishibashi T
    Nippon Ganka Gakkai Zasshi; 1999 Dec; 103(12):923-47. PubMed ID: 10643294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Glucose Aggravates Retinal Endothelial Cell Dysfunction by Activating the RhoA/ROCK1/pMLC/Connexin43 Signaling Pathway.
    Zhao H; Kong H; Wang W; Chen T; Zhang Y; Zhu J; Feng D; Cui Y
    Invest Ophthalmol Vis Sci; 2022 Jul; 63(8):22. PubMed ID: 35881407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Positive Feedback Loop of Profilin-1 and RhoA/ROCK1 Promotes Endothelial Dysfunction and Oxidative Stress.
    Li X; Liu J; Chen B; Fan L
    Oxid Med Cell Longev; 2018; 2018():4169575. PubMed ID: 29849894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profilin-1 mediates microvascular endothelial dysfunction in diabetic retinopathy through HIF-1α-dependent pathway.
    Ding H; Chen B; Lu Q; Wang J
    Int J Clin Exp Pathol; 2018; 11(3):1247-1255. PubMed ID: 31938219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ASK1/p38‑mediated NLRP3 inflammasome signaling pathway contributes to aberrant retinal angiogenesis in diabetic retinopathy.
    Zou W; Luo S; Zhang Z; Cheng L; Huang X; Ding N; Pan Y; Wu Z
    Int J Mol Med; 2021 Feb; 47(2):732-740. PubMed ID: 33416127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelial Dysfunction in Diabetic Retinopathy.
    Gui F; You Z; Fu S; Wu H; Zhang Y
    Front Endocrinol (Lausanne); 2020; 11():591. PubMed ID: 33013692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pigment epithelium-derived factor inhibits retinal microvascular dysfunction induced by 12/15-lipoxygenase-derived eicosanoids.
    Ibrahim AS; Tawfik AM; Hussein KA; Elshafey S; Markand S; Rizk N; Duh EJ; Smith SB; Al-Shabrawey M
    Biochim Biophys Acta; 2015 Mar; 1851(3):290-8. PubMed ID: 25562624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy.
    Yang J; Liu Z
    Front Endocrinol (Lausanne); 2022; 13():816400. PubMed ID: 35692405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transthyretin Exerts Pro-Apoptotic Effects in Human Retinal Microvascular Endothelial Cells Through a GRP78-Dependent Pathway in Diabetic Retinopathy.
    Shao J; Yin Y; Yin X; Ji L; Xin Y; Zou J; Yao Y
    Cell Physiol Biochem; 2017; 43(2):788-800. PubMed ID: 28950253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathy.
    Behl T; Kotwani A
    Pharmacol Res; 2015 Sep; 99():137-48. PubMed ID: 26054568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profilin acts downstream of LDL to mediate diabetic endothelial cell dysfunction.
    Romeo G; Frangioni JV; Kazlauskas A
    FASEB J; 2004 Apr; 18(6):725-7. PubMed ID: 14977885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Canonical Wnt signaling in diabetic retinopathy.
    Chen Q; Ma JX
    Vision Res; 2017 Oct; 139():47-58. PubMed ID: 28545982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy.
    Wisniewska-Kruk J; Klaassen I; Vogels IM; Magno AL; Lai CM; Van Noorden CJ; Schlingemann RO; Rakoczy EP
    Exp Eye Res; 2014 May; 122():123-31. PubMed ID: 24703908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy.
    Wan TT; Li XF; Sun YM; Li YB; Su Y
    Biomed Pharmacother; 2015 Aug; 74():145-7. PubMed ID: 26349976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA.
    Yan B; Yao J; Liu JY; Li XM; Wang XQ; Li YJ; Tao ZF; Song YC; Chen Q; Jiang Q
    Circ Res; 2015 Mar; 116(7):1143-56. PubMed ID: 25587098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogenic roles of microvesicles in diabetic retinopathy.
    Zhang W; Chen S; Liu ML
    Acta Pharmacol Sin; 2018 Jan; 39(1):1-11. PubMed ID: 28713160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.