BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 25791356)

  • 21. Activation of the TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy: a novel inhibitory effect of minocycline.
    Chen W; Zhao M; Zhao S; Lu Q; Ni L; Zou C; Lu L; Xu X; Guan H; Zheng Z; Qiu Q
    Inflamm Res; 2017 Feb; 66(2):157-166. PubMed ID: 27785530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lonicerae Japonicae Flos attenuates diabetic retinopathy by inhibiting retinal angiogenesis.
    Zhou L; Zhang T; Lu B; Yu Z; Mei X; Abulizi P; Ji L
    J Ethnopharmacol; 2016 Aug; 189():117-25. PubMed ID: 27196298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RhoA acts downstream of Wnt5 and Wnt11 to regulate convergence and extension movements by involving effectors Rho kinase and Diaphanous: use of zebrafish as an in vivo model for GTPase signaling.
    Zhu S; Liu L; Korzh V; Gong Z; Low BC
    Cell Signal; 2006 Mar; 18(3):359-72. PubMed ID: 16019189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. O- glycosylation can regulate the proliferation and migration of human retinal microvascular endothelial cells through ZFR in high glucose condition.
    Xing X; Wang H; Zhang Y; Niu T; Jiang Y; Shi X; Wang C; Liu K
    Biochem Biophys Res Commun; 2019 May; 512(3):552-557. PubMed ID: 30914198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction.
    Qiu GZ; Tian W; Fu HT; Li CP; Liu B
    Biochem Biophys Res Commun; 2016 Feb; 471(1):135-41. PubMed ID: 26845358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GIT1 mediates thrombin signaling in endothelial cells: role in turnover of RhoA-type focal adhesions.
    van Nieuw Amerongen GP; Natarajan K; Yin G; Hoefen RJ; Osawa M; Haendeler J; Ridley AJ; Fujiwara K; van Hinsbergh VW; Berk BC
    Circ Res; 2004 Apr; 94(8):1041-9. PubMed ID: 15016733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rho kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage.
    Arita R; Hata Y; Nakao S; Kita T; Miura M; Kawahara S; Zandi S; Almulki L; Tayyari F; Shimokawa H; Hafezi-Moghadam A; Ishibashi T
    Diabetes; 2009 Jan; 58(1):215-26. PubMed ID: 18840783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From pathobiology to the targeting of pericytes for the treatment of diabetic retinopathy.
    Arboleda-Velasquez JF; Valdez CN; Marko CK; D'Amore PA
    Curr Diab Rep; 2015 Feb; 15(2):573. PubMed ID: 25620405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transforming growth factor-beta1-induced endothelial barrier dysfunction involves Smad2-dependent p38 activation and subsequent RhoA activation.
    Lu Q; Harrington EO; Jackson H; Morin N; Shannon C; Rounds S
    J Appl Physiol (1985); 2006 Aug; 101(2):375-84. PubMed ID: 16645187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstituted high-density lipoprotein inhibits thrombin-induced endothelial tissue factor expression through inhibition of RhoA and stimulation of phosphatidylinositol 3-kinase but not Akt/endothelial nitric oxide synthase.
    Viswambharan H; Ming XF; Zhu S; Hubsch A; Lerch P; Vergères G; Rusconi S; Yang Z
    Circ Res; 2004 Apr; 94(7):918-25. PubMed ID: 14988229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered expression patterns of VEGF receptors in human diabetic retina and in experimental VEGF-induced retinopathy in monkey.
    Witmer AN; Blaauwgeers HG; Weich HA; Alitalo K; Vrensen GF; Schlingemann RO
    Invest Ophthalmol Vis Sci; 2002 Mar; 43(3):849-57. PubMed ID: 11867607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of tenascin-C on normal and diabetic retinal endothelial cells in culture.
    Castellon R; Caballero S; Hamdi HK; Atilano SR; Aoki AM; Tarnuzzer RW; Kenney MC; Grant MB; Ljubimov AV
    Invest Ophthalmol Vis Sci; 2002 Aug; 43(8):2758-66. PubMed ID: 12147613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of the hexosamine biosynthetic pathway in the hyperglycemia-dependent and -independent breakdown of the retinal neurovascular unit.
    Wang Y; Eshwaran R; Beck SC; Hammes HP; Wieland T; Feng Y
    Mol Metab; 2023 Jul; 73():101736. PubMed ID: 37172821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methylglyoxal-induced imbalance in the ratio of vascular endothelial growth factor to angiopoietin 2 secreted by retinal pigment epithelial cells leads to endothelial dysfunction.
    Bento CF; Fernandes R; Matafome P; Sena C; Seiça R; Pereira P
    Exp Physiol; 2010 Sep; 95(9):955-70. PubMed ID: 20562294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diabetes-Induced Jagged1 Overexpression in Endothelial Cells Causes Retinal Capillary Regression in a Murine Model of Diabetes Mellitus: Insights Into Diabetic Retinopathy.
    Yoon CH; Choi YE; Cha YR; Koh SJ; Choi JI; Kim TW; Woo SJ; Park YB; Chae IH; Kim HS
    Circulation; 2016 Jul; 134(3):233-47. PubMed ID: 27407072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of leukotrienes in diabetic retinopathy.
    Behl T; Kaur I; Kotwani A
    Prostaglandins Other Lipid Mediat; 2016 Jan; 122():1-9. PubMed ID: 26673555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pericytes and the pathogenesis of diabetic retinopathy.
    Hammes HP
    Horm Metab Res; 2005 Apr; 37 Suppl 1():39-43. PubMed ID: 15918109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nucleoside diphosphate kinase B deficiency causes a diabetes-like vascular pathology via up-regulation of endothelial angiopoietin-2 in the retina.
    Qiu Y; Zhao D; Butenschön VM; Bauer AT; Schneider SW; Skolnik EY; Hammes HP; Wieland T; Feng Y
    Acta Diabetol; 2016 Feb; 53(1):81-9. PubMed ID: 25900369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone Morphogenetic Proteins and Diabetic Retinopathy.
    Elmasry K; Habib S; Moustafa M; Al-Shabrawey M
    Biomolecules; 2021 Apr; 11(4):. PubMed ID: 33919531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiation effects on the cytoskeleton of endothelial cells and endothelial monolayer permeability.
    Gabryś D; Greco O; Patel G; Prise KM; Tozer GM; Kanthou C
    Int J Radiat Oncol Biol Phys; 2007 Dec; 69(5):1553-62. PubMed ID: 17920784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.